Французский ученый Луи де Бройль, осознавая существующую в природе симметрию и развивая представления о двойственной корпускулярно-волновой природе света, выдвинул гипотезу об универсальности корпускулярно-волнового дуализма . Согласно де Бройлю, с каждым микрообъектом связываются, с одной стороны, корпускулярные характеристики – энергия Е и импульс р , а с другой – волновые характеристики – частота n и длина волны l . Количественные соотношения, связывающие корпускулярные и волновые свойства частиц, такие же, как для фотонов:

Смелость гипотезы де Бройля заключалась именно в том, что соотношение (1) постулировалось не только для фотонов, но и для других микрочастиц, в частности для таких, которые обладают массой покоя. Таким образом, любой частице, обладающей импульсом, сопоставляют волновой процесс с длиной волны, определяемой по формуле де Бройля :

Это соотношение справедливо для любой частицы с импульсом р .

Определим некоторые основные свойства волн де Бройля. Рассмотрим свободно движущуюся со скоростью v частицу массой m . Вычислим для нее фазовую и групповую скорости волн де Бройля. Итак, фазовая скорость:

, (3)

где и , – волновое число. Так как c>v , то фазовая скорость волн де Бройля больше скорости света в вакууме.

Групповая скорость: .

Для свободной частицы, согласно теории относительности Эйнштейна, справедливо , тогда

.

Следовательно, групповая скорость волн де Бройля равна скорости частицы.

Согласно двойственной корпускулярно-волновой природе частиц вещества, для описания микрочастиц используются то волновые, то корпускулярные представления. Поэтому приписывать им все свойства частиц и все свойства волн нельзя. Значит, необходимо внести некоторые ограничения в применении к объектам микромира понятий классической механики.

В. Гейзенберг, учитывая волновые свойства микрочастиц и связанные с волновыми свойствами ограничения в их поведении, пришел к выводу, что объект микромира невозможно одновременно с любой наперед заданной точностью характеризовать и координатой и импульсом. Согласно соотношению неопределенностей Гейзенберга , микрочастица (микрообъект) не может иметь одновременно и определенную координату (x, y, z ), и определенную соответствующую проекцию импульса (p x , p y , p z ), причем неопределенности этих величин удовлетворяют условиям

т.е. произведение неопределенностей координаты и соответствующей ей проекции импульса не может быть меньше величины порядка h .

Из соотношения неопределенностей (4) следует, что, например, если микрочастица находится в состоянии с точным значением координаты (Dx =0), то в этом состоянии (Dp x ®¥), и наоборот. Таким образом, для микрочастицы не существует состояний, в которых ее координаты и импульс имели бы одновременно точные значения. Отсюда вытекает и фактическая невозможность одновременно с любой наперед заданной точностью измерить координату и импульс микрообъекта. Так как в классической механике принимается, что измерение координаты и импульса может быть произведено с любой точностью, то соотношение неопределенностей является , таким образом, квантовым ограничением применимости классической механики к микрообъектам .

В квантовой теории рассматривается также соотношение неопределенностей для энергии Е и времени t , т.е. неопределенности этих величин удовлетворяют условию

Подчеркнем, что – неопределенность энергии некоторого состояния системы, Dt – промежуток времени, в течение которого оно существует. Следовательно, система, имеющая среднее время жизни Dt , не может быть охарактеризована определенным значением энергии; разброс энергии возрастает с уменьшением среднего времени жизни. Из выражения (5) следует, что частота излученного фотона также должна иметь неопределенность , т.е. линии спектра должны характеризоваться частотой, равной . Опыт действительно показывает, что все спектральные линии размыты; измеряя ширину спектральной линии, можно оценить порядок времени существования атома в возбужденном состоянии.

2. Волновая функция и ее свойства

Итак, квантовая механика описывает законы движения и взаимодействия микрочастиц с учетом их волновых свойств. Однако при этом отмечается, что волны де Бройля (микрочастицы) не обладают всеми свойствами электромагнитных волн. Например, электромагнитные волны представляют собой распространяющееся в пространстве электромагнитное поле. Распространение волн де Бройля не связано с распространением в пространстве какого-либо электромагнитного поля. Экспериментально доказано, что равномерно и прямолинейно движущиеся заряженные частицы не излучают электромагнитных волн.

Из опытов по дифракции электронов следует, что в этих экспериментах обнаруживается неодинаковое распределение пучков электронов, отраженных или рассеянных по различным направлениям: в некоторых направлениях наблюдается большее число электронов, чем во всех других. С волновой точки зрения наличие максимумов числа электронов в некоторых направлениях означает, что эти направления соответствуют наибольшей интенсивности волн де Бройля. Другими словами, интенсивность волн в данной точке пространства определяет плотность вероятности попадания электронов в эту точку. Это послужило основанием для своеобразного статистического, вероятностного истолкования волн де Бройля.

Единственное правильное толкование волн материи, позволяющее согласовать между собой описанные факты, это статистическое толкование : интенсивность волны пропорциональна вероятности обнаружить частицу в данном месте. Для того, чтобы описать распределение вероятности нахождения частицы в данный момент времени в некоторой точке пространства, вводят функцию , называемую волновой функцией (или псифункцией). Определяли ее так, чтобы вероятность dW того, что частица находится в элементе объема dV , равнялась произведению и элемента объема dV :

Физический смысл имеет не сама функция Y, а квадрат ее модуля: , где Y * – функция, комплексно сопряженная с Y. Величина имеет смысл плотности вероятности : , т.е. определяет вероятность нахождения частицы в единичном объеме в окрестности точки с координатами x, y, z . Так как пребывание частицы где-либо в пространстве есть достоверное событие и его вероятность должна быть равна единице, то это значит, что волновая функция удовлетворяет условию нормировки вероятностей :

Итак, в квантовой механике состояние микрочастиц описывается принципиально по новому – с помощью волновой функции, которая является основным носителем информации об их корпускулярных и волновых свойствах. Это налагает на волновую функцию ряд ограничительных условий. Функция Y, характеризующая вероятность обнаружения действия микрочастицы в элементе объема, должна быть:

1. конечной (вероятность не может быть больше единицы);

2. однозначной (вероятность не может быть неоднозначной величиной);

3. непрерывной (вероятность не может изменяться скачком).

Волновая функция удовлетворяет принципу суперпозиции : если система может находиться в различных состояниях, описываемых волновыми функциями , то она также может находиться в состоянии Y, описываемом линейной комбинацией этих функций:

где С n (n =1, 2, …) – произвольные, вообще говоря, комплексные числа.

Сложение волновых функций (амплитуд вероятностей), а не вероятностей (определяемых квадратами модулей волновых функций) принципиально отличает квантовую теорию от классической статистической теории, в которой для независимых событий справедлива теорема сложения вероятностей .

Волновая функция, являясь основной характеристикой состояния микрообъектов, позволяет в квантовой механике вычислять средние значения физических величин, характеризующих данный микрообъект:

.

где интегрирование ведется по всему бесконечному пространству, как и в случае (7).

3. Уравнение Шредингера.

Статистическое истолкование волн де Бройля и соотношение неопределенностей Гейзенберга привели к выводу, что уравнением движения в квантовой механике, описывающем движение микрочастиц в различных силовых полях, должно быть уравнение, из которого бы вытекали наблюдаемые на опыте волновые свойства частиц. Основное уравнение должно быть уравнением относительно волновой функции , так как именно она, или, точнее, величина , определяет вероятность пребывания частицы в момент времени t в объеме dV , т.е. в области с координатами x и x +dx , y и y +dy , z и z +dz . Так как искомое уравнение должно учитывать волновые свойства частиц, то оно должно быть волновым уравнением.

Основное уравнение нерелятивистской квантовой механики сформулировано в 1926 г. Э. Шредингером. Уравнение Шредингера, как и все основные уравнения физики (например, уравнения Ньютона в классической механике и уравнения Максвелла для электромагнитного поля), не выводится, а постулируется . Правильность этого уравнения подтверждается согласием с опытом получаемых с его помощью результатов, что, в свою очередь, придает ему характер закона природы. Уравнение Шредингера имеет вид:

, (8)

где , m – масса частицы, D – оператор Лапласа , i – мнимая единица, – функция потенциальной энергии частицы в силовом поле, в котором она движется, – искомая волновая функция частицы.

Уравнение (8) справедливо для любой частицы, движущейся с малой (по сравнению со скоростью света) скоростью, т.е. v<. Оно дополняется условиями, накладываемыми на волновую функцию:

1) функция Y должна быть конечной , непрерывной и однозначной ;

2) производные должны быть непрерывны ;

3) функция должна быть интегрируема , т.е. интеграл должен быть конечным .

Уравнение (8) является общим уравнением Шредингера. Его также называют временным уравнением Шредингера , так как оно содержит производную от функции Y по времени. Однако для большинства физических явлений, происходящих в микромире, уравнение (8) можно упростить, исключив зависимость Y от времени, иными словами найти уравнение Шредингера для стационарных состояний – состояний с фиксированными значениями энергии . Это возможно, если силовое поле, в котором движется частица, стационарно, т.е. функция явно не зависит от времени и имеет смысл потенциальной энергии. В данном случае решение уравнения Шредингера может быть представлено в виде произведения двух функций, одна из которых есть функция только координат, другая – только времени, причем зависимость от времени выражается множителем , так что

где Е – полная энергия частицы, постоянная в случае стационарного поля. Подставляя это в (8), получим

откуда придем к уравнению, определяющему функцию y :

. (9)

Уравнение (9) называется уравнением Шредингера для стационарных состояний . В это уравнение в качестве параметра входит полная энергия Е частицы. В теории дифференциальных уравнений доказывается, что подобные уравнения имеют бесчисленное множество решений, из которых посредством наложения граничных условий отбирают решения, имеющие физический смысл. Для уравнения Шредингера такими условиями являются упомянутые выше условия регулярности волновых функций. Таким образом, реальный физический смысл имеют только такие решения, которые выражаются регулярными функциями y . Но регулярные решения имеют место не при любых значениях параметра Е , а лишь при определенном их наборе, характерном для данной задачи. Эти значения энергии называются собственными . Решения же, которые соответствуют собственным значениям энергии, называются собственными функциями . Собственные значения Е могут образовать как непрерывный, так и дискретный ряд. В первом случае говорят о непрерывном , или сплошном , спектре, во втором – о дискретном спектре .

4. Ядерная модель атома.

Общепринятую сегодня ядерную (планетарную) модель атома предложил Э. Резерфорд. Согласно этой модели, вокруг положительного ядра, имеющего заряд Ze (Z – порядковый номер элемента в системе Менделеева, е – элементарный заряд), размер 10 -15 -10 -14 м и массу, практически равную массе атома, в области с линейными размерами порядка 10 -10 м по замкнутым орбитам движутся электроны, образуя электронную оболочку атома. Так как атомы нейтральны, то заряд ядра равен суммарному заряду электронов, т.е. вокруг ядра вращается Z электронов.

Попытки построить модель атома в рамках классической физики не привели к успеху. Преодоление возникших трудностей потребовало создания качественно новой – квантовой – теории атома. Первая попытка построения такой теории была предпринята Нильсом Бором. В основу своей теории Бор положил два постулата.

Первый постулат Бора (постулат стационарных состояний) : в атоме существуют стационарные (не изменяющиеся со временем) состояния, в которых он не излучает энергии. Стационарным состоянием атома соответствуют стационарные орбиты, по которым движутся электроны. Движение электронов по стационарным орбитам не сопровождается излучением электромагнитных волн. В стационарном состоянии атома электрон, двигаясь по круговой орбите, должен иметь дискретные квантованные значения момента импульса, удовлетворяющее условию

где m e – масса электрона, v – его скорость по n -ой орбите радиуса r n .

Второй постулат Бора (правило частот) : при переходе электрона с одной стационарной орбиты на другую излучается (поглощается) один фотон с энергией

равной разности энергий соответствующих стационарных состояний (E n и E m – соответственно энергии стационарных состояний атома до и после излучения (поглощения)). При E n <E m происходит излучение фотона (переход атома из состояния с большей энергией в состояние с меньшей энергией, т.е. переход электрона с более удаленной от ядра орбиты на более близлежащую), при E n >E m – его поглощение (переход атома в состояние с большей энергией, т.е. переход электрона на более удаленную от ядра орбиту). Набор возможных дискретных частот квантовых переходов определяет линейчатый спектр атома.

Постулаты, выдвинутые Бором, позволили рассчитать спектр атома водорода и водородоподобных систем – систем, состоящих из ядра с зарядом Ze и одного электрона (например, ионы He + , Li 2+). Следуя Бору, рассмотрим движение электрона в такой системе, ограничиваясь круговыми стационарными орбитами. Решая совместно уравнение , предложенное Резерфордом, и уравнение (10), получим выражение для радиуса n -й стационарной орбиты:

.

Откуда следует, что радиусы орбит растут пропорционально квадратам целых чисел. Для атома водорода (Z =1) радиус первой орбиты электрона при n =1, называемый первым боровским радиусом (а ), равен

,

что соответствует расчетам на основании кинетической теории газов.

Кроме этого, учитывая квантованные для радиуса n -й стационарной орбиты значения, можно показать, что энергия электрона может принимать только следующие дозволенные дискретные значения:

,

где знак минус означает, что электрон находится в связанном состоянии.

5. Атом водорода в квантовой механике.

Решение задачи об энергетических уровнях электрона для атома водорода (а также водородоподобных систем: иона гелия He + , двукратно ионизированного лития Li ++ и др.) сводится к задаче о движении электрона в кулоновском поле ядра.

Потенциальная энергия взаимодействия электрона с ядром, обладающим зарядом Ze (для атома водорода Z =1),

,

где r – расстояние между электроном и ядром.

Состояние электрона в атоме водорода описывается волновой функцией y , удовлетворяющей стационарному уравнению Шредингера (9), учитывающему предыдущее значение потенциальной энергии:

, (12)

где m – масса электрона, Е – полная энергия электрона в атоме. Так как поле, в котором движется электрон, является центрально-симметричным, то для решения уравнения (12) обычно используют сферическую систему координат: r , q , j . Не вдаваясь в математическое решение этой задачи, ограничимся рассмотрением важнейших результатов, которые из него следуют.

1. Энергия . В теории дифференциальных уравнений доказывается, что уравнения типа (27) имеют решения, удовлетворяющие требованиям однозначности, конечности и непрерывности волновой функции y , только при собственных значениях энергии

, (13)

т.е. для дискретного набора отрицательных значений энергии. Самый нижний уровень Е 1 , отвечающий минимальной возможной энергии, - основной , все остальные (E n >E 1 , n =1, 2, 3, …) – возбужденные . При E <0 движение электрона является связанным , а при E >0 – свободным ; область непрерывного спектра Е >0 соответствует ионизированному атому . Выражение (13) совпадает с формулой, полученной Бором для энергии атома водорода. Однако если Бору пришлось вводить дополнительные гипотезы (постулаты), то в квантовой механике дискретные значения энергии, являясь следствием самой теории, вытекают непосредственно из решения уравнения Шредингера.

2. Квантовые числа . В квантовой механике доказывается, что уравнению Шредингера (12) удовлетворяют собственные функции , определяемые тремя квантовыми числами: главным n , орбитальным l и магнитным m l .

Главное квантовое число n , согласно (13), определяет энергетические уровни электрона в атоме и может принимать любые целочисленные значения начиная с единицы:

n =1, 2, 3, …

Из решения уравнения Шредингера вытекает, что момент импульса (механический орбитальный момент) электрона квантуется , т.е. не может быть произвольным, а принимает дискретные значения, определяемые формулой

где l орбитальное квантовое число , которое при заданном n принимает значения l =0, 1, …, (n -1), т.е. всего n значений, и определяет момент импульса электрона в атоме.

Из решения уравнения Шредингера следует также, что вектор L l момента импульса электрона может иметь лишь такие ориентации в пространстве, при которых его проекция L lz на направление z внешнего магнитного поля принимает квантованные значения, кратные:

Рис. 1

где m l магнитное квантовое число , которое при заданном l может принимать значения m l =0, ±1, ±2, …, ±l , т.е. всего 2l +1 значений. Таким образом, магнитное квантовое число m l определяет проекцию момента импульса электрона на заданное направление , причем вектор момента импульса электрона в атоме может иметь в пространстве 2l +1 ориентаций.

Вероятность обнаружения электрона в различных частях атома различна. Электрон при своем движении как бы «размазан» по всему объему, образуя электронное облако, плотность (густота) которого характеризует вероятность нахождения электрона в различных точках объема атома. Квантовые числа n и l характеризуют размер и форму электронного облака, а квантовое число m l характеризует ориентацию электронного облака в пространстве .

3. Спектр . Светящиеся газы дают линейчатые спектры испускания. В соответствии с законом Кирхгофа спектры поглощения газов также имеют линейчатую структуру. Все сериальные формулы спектра водорода могут быть выражены единой формулой, называемой обобщенной формулой Бальмера :

, (16)

где R =3,293×10 15 с -1 – постоянная Ридберга , m и n – целые числа, причем для данной серии n =m +1, m +2, m +3 и т.д. Всего различают шесть серий спектральных линий: серия Лаймана (m =1), серия Бальмера (m =2), серия Пашена (m =3), серия Брэкета (m =4), серия Пфунда (m =5), серия Хэмфри (m =6) (рис. 1).

6. Спин электрона. Принцип Паули. Принцип неразличимости

тождественных частиц.

В 1922 г. было обнаружено, что узкий пучок атомов водорода, заведомо находящихся в s-состоянии, в неоднородном магнитном поле расщепляется на два пучка. В этом состоянии момент импульса электрона равен нулю (14). Магнитный момент атома, связанный с орбитальным движением электрона, пропорционален механическому моменту, поэтому он равен нулю и магнитное поле не должно оказывать влияния на движение атомов водорода в основном состоянии, т.е. расщепления быть не должно.

Для объяснения этого явления, а также ряда других трудностей в атомной физике было предложено, что электрон обладает собственным неуничтожимым механическим моментом импульса , не связанным с движением электрона в пространстве, – спином . Спин электрона (и всех других частиц) – квантовая величина, у нее нет классического аналога; это внутреннее неотъемлемое свойство электрона, подобное его заряду и массе.

Если электрону приписывается собственный механический момент импульса (спин) L s , то ему соответствует собственный магнитный момент. Согласно общим выводам квантовой механики, спин квантуется по закону

,

где s спиновое квантовое число .

По аналогии с орбитальным моментом импульса, проекция L sz спина квантуется так, что вектор L s может принимать 2s +1 ориентаций. Так как в опытах наблюдались только две ориентации, то 2s +1=2, откуда s =1/2. Проекция спина на направление внешнего магнитного поля, являясь квантованной величиной, аналогичным (15):

где m s магнитное спиновое квантовое число ; оно может иметь только два значения: .

Распределение электронов в атоме подчиняется квантово-механическому закону, называемому принципом Паули или принципом исключения . В своей простейшей формулировке он гласит: «В любом атоме не может быть двух электронов, находящихся в двух одинаковых стационарных состояниях, определяемых набором четырех квантовых чисел: главного n , орбитального l , магнитного m l и спинового m s », т.е. Z(n, l, m l , m s) =0 или 1, где Z(n, l, m l , m s) – число электронов, находящихся в квантовом состоянии, описываемом набором четырех квантовых чисел: n, l, m l , m s . Таким образом, принцип Паули утверждает, что два электрона, связанные в одном и том же атоме, различаются значениями по крайней мере одного квантового числа.

Совокупность электронов в многоэлектронном атоме, имеющих одно и то же главное квантовое число n , называют электронной оболочкой . В каждой из оболочек электроны распределяются по подоболочкам , соответствующим данному l . Поскольку орбитальное квантовое число принимает значения от 0 до n -1, число подоболочек равно порядковому номеру n оболочки. Количество электронов в подоболочке определяется магнитным и магнитным спиновым квантовыми числами: максимальное число электронов в подоболочке с данным l равно 2(2l +1).

Если перейти от рассмотрения движения одной микрочастицы (одного электрона) к многоэлементным системам, то проявляются особые свойства, не имеющие аналога в классической физике. Пусть квантово-механическая система состоит из одинаковых частиц, например, электронов. Все электроны имеют одинаковые физические свойства – массу, электрический заряд, спин и другие внутренние характеристики. Такие частицы называются тождественными .

Необычные свойства системы одинаковых тождественных частиц проявляются в фундаментальном принципе квантовой механики – принципе неразличимости тождественных частиц , согласно которому невозможно экспериментально различить тождественные частицы. В классической механике даже одинаковые частицы можно различить по положению в пространстве и импульсам, т.е. классические частицы обладают индивидуальностью.

В квантовой механике положение иное. Из соотношения неопределенностей вытекает, что для микрочастиц вообще неприменимо понятие траектории; состояние микрочастицы описывается волновой функцией, позволяющей вычислять лишь вероятность () нахождения микрочастицы в окрестностях той или иной точки пространства. Если же волновые функции двух тождественных частиц в пространстве перекрываются, то разговор о том, какая частица находится в данной области, вообще лишен смысла: можно говорить лишь о вероятности нахождения в данной области одной из тождественных частиц. Таким образом, в квантовой механике тождественные частицы полностью теряют свою индивидуальность и становятся неразличимыми.

7. Квантовые статистики. Вырожденный газ.

Основная задача статистической физики в квантовых статистиках состоит в нахождении функции распределения частиц системы по тем или другим параметрам – координатам, импульсам, энергиям и т.п., а также в отыскании средних значений этих параметров, характеризующих макроскопическое состояние всей системы частиц. Для систем фермионов и бозонов эти задачи решаются единообразно, но несколько различно в связи с тем, что бозоны не подчиняются принципу Паули. В соответствии с этим различаются две квантовые статистики: Ферми-Дирака и Бозе-Эйнштейна, в рамках которых определен вид функции распределения частиц системы по энергиям.

Напомним, что функция распределения по энергиям представляет собой долю от общего числа частиц, которые имеют энергию в интервале значений от W до W+dW :

,

где N – общее число частиц, f(W) – функция распределения по энергиям.

Для системы из n невзаимодействующих фермионов с энергией W (идеальный Ферми-газ) или системы из n невзаимодействующих бозонов с энергией W (идеальный Бозе-газ) были определены похожие функции распределения:

, (17)

где k – постоянная Больцмана, Т – термодинамическая температура, m - химический потенциал, представляющий собой изменение энергии системы при изменении на единицу числа частиц системы при изохорном или изоэнтропийном процессе. В рамках статистики Ферми-Дирака в (32) берут знак «+», т.е. в этом случае . Соответственно для Бозе-газа – знак «-» и .

Газ называется вырожденным , если его свойства отличаются от свойств классического идеального газа. В вырожденном газе происходит взаимное квантово-механическое влияние частиц газа, обусловленное неразличимостью тождественных частиц. Поведение фермионов и бозонов различно при вырождении.

Для характеристики степени вырождения газа вводится параметр вырождения А :

Функция распределения с помощью параметра вырождения для обеих квантовых статистик запишется в виде:

.

Если параметр вырождения мал A<<1, то и функция распределения превращается в функцию распределения Максвелла-Больцмана , лежащую в основе классической статистики невырожденного газа:

Температурой вырождения называется температура, ниже которой отчетливо проявляются квантовые свойства идеального газа, обусловленные тождественностью частиц. Сравнительно легко можно грубо оценить температурный критерий вырождения газа. Вырождение обычных газов сказывается при низких температурах. Для фотонного и электронного газа в металлах это не справедливо. Электронный газ в металлах практически всегда вырожден. Только при температурах выше нескольких десятков тысяч градусов электроны металла подчинялись бы классической статистике Максвелла-Больцмана. Но существование металлов в конденсированном состоянии при таких температурах невозможно. Поэтому классическое описание поведения электронов в металлах приводит в электродинамике в ряде случаев к законам, резко противоречащих опыту. В полупроводниках концентрация электронного газа много меньше, чем в металлах. В этих условиях температура вырождения составляет порядка 10 -4 К и электронный газ в полупроводниках является невырожденным и подчиняется классической статистике. Примером вырожденного газа служит фотонный газ. Так как масса фотона равна нулю, то температура вырождения стремится к бесконечности. Фотонный газ при любой температуре является вырожденным. Атомные и молекулярные газы имеют весьма малые температуры вырождения. Например, для водорода при нормальных условиях температура вырождения составляет около 1 К. Для остальных газов, более тяжелых, чем водород, она еще меньше. Газы при нормальных условиях не бывают вырождены. Вырождение, связанное с квантовыми свойствами газов, проявляется значительно меньше, чем отклонение газов от идеальности, вызванное межмолекулярными взаимодействиями.

Максимальная энергия, которую могут иметь электроны проводимости в кристалле при 0 К называется энергией Ферми и обозначается E F . Наивысший энергетический уровень, занятый электронами, называется уровнем Ферми . Уровню Ферми соответствует энергия Ферми, которую имеют электроны на этом уровне. Уровень Ферми, очевидно, будет тем выше, чем больше плотность электронного газа. Работу выхода электрона из металла нужно отсчитывать от уровня Ферми, т.е. от верхнего из занятых электронами энергетических уровней.

8. Понятие о зонной теории твердых тел.

Используя уравнение Шредингера, в принципе можно рассмотреть задачу о кристалле, например найти возможные значения его энергии, а также соответствующие энергетические состояния. Однако как в классической, так и в квантовой механике отсутствуют методы точного решения такой задачи для случая многих частиц. Поэтому эта задача решается приближенно сведением задачи многих частиц к одноэлектронной задаче об одном электроне, движущемся в заданном внешнем поле. Подобный путь приводит к зонной теории твердого тела .

Рис. 2

Пока атомы изолированы, т.е. находятся друг от друга на макроскопических расстояниях, они имеют совпадающие схемы энергетических уровней. При образовании кристаллической решетки, т.е. при сближении атомов до межатомных расстояний решетки, взаимодействие между атомами приводит к тому, что энергетические уровни атомов смещаются, расщепляются и расширяются в зоны, образуя зонный энергетический спектр . На рис. 2 показано расщепление энергетических уровней в зависимости от расстояния между атомами. Видно, что заметно расщепляются и расширяются лишь уровни внешних, валентных электронов, наиболее слабо связанных с ядром и имеющих наибольшую энергию, а также более высокие уровни, которые в основном состоянии атома вообще электронами не заняты. Уровни же внутренних электронов либо совсем не расщепляются, либо расщепляются слабо. Таким образом, в твердых телах внутренние электроны ведут себя так же, как в изолированных атомах, валентные же электроны «коллективизированы» – принадлежат всему твердому телу.

Энергия внешних электронов может принимать значения в пределах закрашенных на рис. 2 областей, называемых разрешенными энергетическими уровнями . Каждая разрешенная зона «вмещает» в себя столько близлежащих дискретных уровней, сколько атомов содержит кристалл: чем больше в кристалле атомов, тем теснее расположены уровни в зоне. Расстояние между соседними энергетическими уровнями столь ничтожно (порядка 10 -22 эВ), что зоны можно считать практически непрерывными, однако факт конечного числа уровней в зоне играет важную роль для распределения электронов по состояниям. Разрешенные энергетические зоны разделены зонами запрещенных значений энергий, называемыми запрещенными энергетическими зонами . В них электроны находиться не могут. Ширина зон (разрешенных и запрещенных) не зависит от размера кристалла. Разрешенные зоны тем шире, чем слабее связь валентных электронов с атомами.

Зонная теория твердых тел позволила с единой точки зрения истолковать существование металлов, диэлектриков и полупроводников, объясняя различие в их электрических свойствах, во-первых, неодинаковым заполнением электронами разрешенных зон и, во-вторых, шириной запрещенных зон. Степень заполнения электронами энергетических уровней в зоне определяется заполнением соответствующих атомных уровней. В общем случае можно говорить о валентной зоне , которая полностью заполнена электронами и образована из энергетических уровней внутренних электронов свободных атомов, и о зоне проводимости (свободной зоне) , которая либо частично заполнена электронами, либо свободна и образована из энергетических уровней внешних «коллективизированных» электронов изолированных атомов. В зависимости от степени заполнения зон электронами и ширины запрещенной зоны возможны четыре случая (рис. 3).

На рис. 3, а самая верхняя зона, содержащая электроны, заполнена лишь частично, т.е. в ней имеются вакантные уровни. В данном случае электрон, получив сколь угодно малую энергетическую «добавку» (например, за счет теплового движения или электрического поля), сможет перейти на более высокий энергетический уровень той же зоны,

В предшествующих главах было показано, что свет в зависимости от условий его изучения проявляет как волновые, так и корпускулярные свойства. Иногда в этом усматривают «противоречивость» свойств света, говорят о «корпускулярно-волновом дуализме». Однако правильнее относить эту «противоречивость» не к природе, а к нашим представлениям о ней, недостаточно приспособленным для описания сложных физических явлений.

В 1923-1924 гг. Луи де Бройль пришел к заключению, что если свет обладает и волновыми, и корпускулярными свойствами (фотоны), то и частицы вещества также могут обладать, кроме корпускулярных, и волновыми свойствами, о чем физики того времени не задумывались. Как известно, фотон характеризуется импульсом

и энергией

Де Бройль по аналогии предположил, что любой частице вещества массой т, движущейся со скоростью и, также можно сопоставить волновой процесс, причем длина волны должна равняться:

Так как кинетическая энергия частицы равна:

то длину волны можно выразить и через кинетическую энергию:

Кроме того, если полная энергия частицы в соответствии со специальной теорией относительности есть Е c 2 , то частице следует сопоставить и частоту

а также волновое число

Найдем теперь фазовую скорость волны де Бройля:

Так как ν ф связана с групповой скоростью волны соотношением:

то оказывается, что групповая скорость волны де Бройля равна скорости самой частицы:

Таким образом, волны де Бройля. Испытывают дисперсию даже в вакууме. Природу введенного им волнового процесса де Бройль не обсуждал. Во всяком случае, волны де Бройля не электромагнитные, так как они присущи и частицам, лишенным заряда либо движущимся с постоянной скоростью равномерно и прямолинейно, т.е. частицам, не дающим электромагнитного излучения. Дисперсия в вакууме также существует для волн электромагнитной природы. В параграфе 14.7 будут освещены еще некоторые свойства волн де Бройля.

Опытное подтверждение гипотезы де Бройля о существовании волновых свойств частиц вещества было получено в опытах Девиссона и Джермера, изучавших отражение электронов от поверхности кристаллов. В этих опытах было установлено два замечательных факта:

1) При изменении угла падения электронов данной скорости отражение имеет резко выраженный максимум при углах падения, удовлетворяющих условию Вульфа-Брэгга, полученному ранее для отражения рентгеновских лучей от кристаллов:

(здесь d - расстояние между атомными плоскостями кристалла, параллельными его поверхности, α – угол скольжения падающего пучка, λ - длина волны Де Бройля).

2) Еще более поразительным оказался второй результат. При данном угле падения и изменении скорости электронов v , что достигалось изменением анодного спряжения U , ускоряющего электроны, интенсивность отражение пучка периодически изменялась (рис. 12.1, кривая 1), причем эта закономерность напоминала закономерность, наблюдаемую при отражении рентгеновских волн различной длины от некоторого кристалла при неизменном угле падения (рис. 12.1, кривая 2).

Так как энергия электрона, приобретенная при прохождении разности потенциалов U , равна:

то абсциссы кривой 1 пропорциональны длинам волн де Бройля.

Оценка длин волн дает:

при (U=400 В, что отвечает условиям опыта, это дает

λ=6,2 x 10 -11 м.

Позже Дж. Томсон, П. С. Тартаковский и другие физики получили дифракционные кольца, пропуская электроны через тонкие слои металла (аналогия с опытами Дебая-Шерера в области рентгеновских лучей, см. § 4.5).

Электронная дифракционная картина очень похожа на рентгеновскую дебаеграмму. Чтобы доказать, что она не вызвана вторичными рентгеновскими лучами, возникающими при торможении электронов в веществе, вдоль фотопластинки, где образовывалась электронная дебаеграмма, создавалось магнитное поле. При этом вся картина смещалась поперек поля. Если бы картина создавалась рентгеновскими, лучами, то никакого смещения не получалось бы.

Позже дифракцию наблюдали и для более тяжелых заряженных частиц - протонов, ионов гелия и др., а также и для нейтральных атомов, причем соотношение (12.1) хорошо подтвердилось.

Так как длина волны де Бройля обратно пропорциональна" массе частицы, то у макроскопических тел волновые свойства практически не проявляются. Действительно, пылинка массой 10 -6 кг, движущаяся со скоростью 10 м/с, характеризуется очень малой длиной волны де Бройля (λ = 6,6-10 -29 м), не проявляющейся в современных экспериментах.

Де Бройль выдвинул гипотезу: волновыми св-вами обладает любой материальный объект. Он использовал за-ны природы света. Носителями э/м поля являются фотоны.

(1) и (2) отражают двойственность природы света и любого э/м излучения.

Де Бройль предложил, что двойственность характерна для любого материального объекта. Из гипотезы де Бройля следует, что волновой механизм является свойством любой материи.

Длина волны де Бройля определяется формулой: ;

Волновые процессы, сопровождают любой объект, движущийся со скоростью V. Это не реальные, а мнимые процессы. Природного аналога эти процессы не имеют.

Эксперим. Док-ва гипотезы де Бройля. Опыты Дэвиссона и Джермера.

Электрон имеет , за счёт волновых свойств он должен давать диффракционную картину через кристалл.

ЭП-электронная пушка; Г-гальванометр;

D 1 , D 2 - диафранмы; ЦФ - цилиндр Фарадея; Ni - монокристалл;  - угол.

При  = const = 50°

Полученный результат можно было объяснить только диффракционным максимумом.

Опыты показали, что пучку эл-нов, ускоренному эл. полем присущи волновые св-ва, т.к. пучок эл-нов на монокристалле Ni даёт дифракцию.

Задание1 1 .

Суперпозиция плоских волн. Волновой пакет. Фазовая и групповая скорости. Волны де Бройля и их свойства. Волновой пакет и частица.

Суперпозиция плоских волн:

Волновой процесс, сопровождающий движение микрочастицы пытались объяснить следующими теориями:

а) С помощью монохромотичной волны. Это невозможно т.к. эта волна бесконечна в пространстве, а микрочастица занимает ограниченную область пространства, определенную ее размерами (след на экране осциллографа)

б) Суперпозиция монохроматических волн, омега и лямбда которых лежат в определенном диапазоне так, что складываясь эти волны дают амплитуду отличную от нуля. в ограниченной области пространства. Такая суперпозиция- волновой пакет.

S(x,t) – сложный волновой процесс.

волновой пакет:

S(x, t) = 2*A*delta k * sin(гамма)/гамма * cos(omega нулевое*t – k нулевое*х)

2*A*delta k * sin(гамма)/гамма – модулированная амплитуда волнового пакета

при гамма -> 0 sin(гамма)/гамма -> 1

при гамма -> +-пи*n sin(гамма)/гамма -> 0

при гамма > пи*n ; гамма < -пи*n sin(гамма)/гамма << 1

Пакет – суперпозиция монохромотических волн, зн-я волнового числа которого лежит в интервале от к(нулевое)-дельта к до к(нулевое)+дельта к

Волны де Бройля и их свойства:

Волны де Бройля описывают волновые свойства микрочастиц. Монохроматическая волна де Бройля имеет вид:

Движение микрочастицы характеризуется величинами Е и р

Е = h*ню = h(с чертой)*omega; omega = E/h(с чертой)

р = h(с чертой)*к; к = р/h(с чертой)

Одномерное движение вдоль оси х:

ПСИ(x,t) = A*exp(-i/h(с чертой) * (Е*t – р*х)

ПСИ(x,t) = A(x,t)*exp(-i/h(с чертой) * (Е*t – р*х)

В общем случае трехмерное пространство:

ПСИ(r ,t) = A*exp(-i/h(с чертой) * (Е*t – р, r )

ПСИ(r ,t) = A(r ,t)*exp(-i/h(с чертой) * (Е*t – р, r )

Свойства:

    Фазовая скорость волн де Бройля больше скорости света

Vф = omega/k = (h(с чертой)*омега)/(h(с чертой)*k) = E/p = (m*c^2)/(m*V) = c^2/V>c

Из этого свойства следует, что Vф не равна скорости передачи энергии, т к энергия не может передаваться со скоростью большей чем скорость света

Фазовая скорость является физической абстракцией.

    Волны де Бройля обладают дисперсией в вакууме (в отличие от э-м волн)

Vф = f(V) = f(mV) = f(p) = {лямбда = h/p} = f(лямбда)

Vф = f(лямбда) – дисперсия

    Групповая скорость волны де Бройля равна скорости движения микрочастиц

U = (d*omega)/(d*k) = d(h(с чертой)*omega)/d(h(с чертой)*k) = dE/dp = d/dp * (p^2/(2*m)) = (2*p)/(2*m) = p/m = p/m = V

    В атоме водорода по Бору на каждой стационарной орбите укладывается целое число волн де Бройля:

mVr = nh(с чертой)

лямбда = h/p; p = h/лямбда = (2*пи*h(с чертой))/лямбда

2*пи*r = n*лямбда

Волновой пакет и частица:

Частицу нельзя описать ни монохроматической волной (т к волна бесконечна), ни пакетом волн де Бройля (т к время «жизни» волнового пакета delta t = m(электрона)/h * (delta x)^2 , потом он расползается (delta x = (2*пи)/delta k))

Волновые свойства можно описать только пользуясь теорией вероятности и статистикой.

1.Фазовая скорость Vф – скорость перемещ. знач. коорд-т с постоян. фазой

ωоdt – kodx=0

Vф=dx/dt=ωо/ko

Фазовая скор. в общ. случае определ-ся параметрами волны, т.е. они разные для разных волн, входящих в сост. волнового пакета.

2.Групповая скор . U – скор. перемещ-я постоян ампитуды(волн пакета).

А=const при γ0

γ=[(dω/dk)o*t-x] Δk

(dω/dk)o*t – x=0

(dω/dk)o*dt – dx=0

U=dx/dt=(dω/dk)o

Задание1 2 .

Статистическое истолкование волн де Бройля. Волновая функция и ее свойства. Нормировка волновой функции. Принцип суперпозиции.

Статистическое истолкование волн де Бройля:

ПСИ * ПСИ(с волной) = |ПСИ|^2 – пси по модулю в квадрате есть мера вероятности найти частицу в данной области пространства в данный момент времени

dw = |ПСИ|^2*dV – вероятность найти микрочастицу в бесконечно малом объеме вблизи точки XYZ в данный момент времени.

w(круглая) = dw/dV = |ПСИ|^2 – плотность вероятности обнаружить микрочастицу в единичном объеме вблизи точки XYZ в данный момент времени

w = ИНТЕГРАЛ (по V(нулевому))|ПСИ|^2 dV – в объеме V(нулевое)

т к ПСИ-функция является комплексной величиной, она не имеет физического смысла. Физический смысл есть только у величины |ПСИ|^2

Волновая функция

Необходимость учета волновых свойств в поведении частиц вещества и на наличие объективной неопределенности в этом поведении. Эти особенности квантовомеханического движения находят свое выражение в том, что состояние движения микрочастицы задается не координатами и импульсами, а некоторой волновой функцией координат и времени (x, y, z, t), являющейся в общем случае комплексной. В простейшем случае – движения свободной частицы в направлении , - такая функция (волновая), имеет вид плоской волны:

- плоская волна де Бройля ,

где  = -1 – мнимая единица, = k/ - волновой вектор, а || = k = 2/ - волновое число.

На волновую функцию, как функцию статистического (вероятностного) распределения, накладывается условие нормировки , согласно которому интеграл по всей области определения (объему) волновой функции должен быть равен едине:

.

Интеграл от плотности вероятности по всему объему представляет собой полную, т. е. 100 % - ую вероятность, вероятность достоверного события. Частица (если она существует) в каком-либо месте из всей доступной для нее области, должна обнаруживаться обязательно, со 100 % - ой вероятностью. Условие нормировки позволяет находить амплитуду волновой функции.

Принцип суперпозиции состояний. ПСИ и С-функции. Классические величины, вступая в суперпозицию, имеют другие значения в результате этой суперпозиции по сравнению с исходными.

В квантовой физике:

Пусть есть квантовая система частиц, которая может находится в состоянии, описываемом волновой функцией ПСИ1 и может находится в другом состоянии, описываемом волновой функцией ПСИ2, тогда эта система может находится в состоянии ПСИ, являющимся линейной суперпозицией состояний ПСИ1 и ПСИ2

ПСИ = С1*ПСИ1 + С2*ПСИ2, где С1, С2 – коэффициенты

общая формула (m различных состояний):

ПСИ = СУММА(от m=1 до n) Сm*ПСИm

Задание1 3 .

Соотношения неопределенностей Гейзенберга. Принцип соответствия.

Из курса оптики известно, что целый ряд оптических явлений удается последовательно описать с волновой точки зрения; примера­ми служат хорошо известные явления интерференции и дифракции света. С другой стороны (сошлемся на рассмотренный в предыдущем параграфе эффект Комптона), свет столь же явно демонстрирует свою корпуску­лярную природу. Этот дуализм "волна-частица" надо рассматривать как экспериментальный факт, и поэтому последовательная теория све­та должна быть корпускулярно-волновой. Разумеется, в каких-то предельных случаях могут оказаться достаточными только волновое или только корпускулярное описания.

Оказывается, и при этом мы вновь сошлемся на эксперимент, что и частицы вещества с ненулевой с массой (к ним относятся, например, электроны, протоны, нейтроны, атомы, молекулы и т. д.) также обнаруживают волновые свойства, так что между ними и фото­нами нет принципиального различия.

В этом пункте при переходе от макро — к микрообъектам возника­ет известная трудность в понимании существа физических явлений. Действительно, на уровне макроявлений корпускулярное и волновое описание четко разграничены. На уровне микроявлений эта граница в значительной степени размывается и движение микрообъекта стано­вится одновременно и волновым, и корпускулярным. Иными словами, более адекватной действительности становится ситуация, при которой микрообъект в какой-то мере похож на корпускулу, в какой-то мере­ на волну, причем эта мера зависит от физических условий наблюдения микрообъекта.

Последовательной теорией, учитывающей эту особенность всех микрочастиц, является квантовая теория. Но прежде чем перейти к изложению ее основных идей, необходимо установить каким образом один и тот же физический объект в принципе может проявлять то корпускулярные, то волновые свойства и какая существует сопостави­мость этих двух различных способов описания.

В оптических явлениях установлен критерий применимости поня­тия луча (т. е. корпускулярной картины) и найдены правила перехода от волновых понятий к корпускулярным. Продолжая рассуждения в этом направлении, можно надеяться! что здесь же лежит переход в обрат­ном направлении: от корпускулярных понятий классической механики к волновым представлениям квантовой механики.

Соответствующие идеи, использующие оптико-механическую анало­гию, были высказаны французским физиком Л. де Бройлем в 1924 г. Де Бройль выдвинул смелую гипотезу о том, что дуализм "волна-час­тица" не является особенностью одних только оптических явлений, но имеет универсальную применимость во всей физике микромира. В своей книге "Революция в физике" он писал: "В оптике в течение столетия слишком пренебрегали корпускулярным способом рассмотрения по сравнению с волновым; не делалось ли в теории материи обратной ошибки? Не думали ли мы слишком много о картине "частиц" и не пре­небрегали ли чрезмерно картиной волн?”

К допущению волновых свойств у материальных частиц его приве­ли также следующие соображения. В конце 20-х годов XIX в. В. Гамильтон обратил внимание на удивительную аналогию между геометри­ческой оптикой и классический (ньютоновской) механикой. Было пока­зано, что основные законы этих столь непохожих на первый взгляд разделов физики представимы в математически тождественной форме. В результате вместо того, чтобы рассматривать движение частицы во внешнем поле с потенциальной энергией , можно изучать рас­пространение светового луча в оптически неоднородной среде с подоб­ранным соответствующим образом показателем преломления . Разумеется, эта эквивалентность описаний допускает и обратный пе­реход.

Отмеченная аналогия распространялась Гамильтоном только на геометрическую оптику и классическую механику. Но, как уже отмеча­лось, геометрическая оптика является приближением более общей вол­новой оптики и не описывает сугубо волновых свойств света. В свою очередь, классическая механика также имеет ограниченную область применимости: она, как известно, не может объяснить существование дискретных уровней энергии в атомных системах.

Идея де Бройля заключалась в том, чтобы расширить аналогию между оптикой и механикой и волновой оптике сопоставить волновую механику, попытавшись применить последнюю к внутриатомным явлениям. "Попытка приписать электрону, и вообще всем частицам, подобно фотонам, двойственную природу, наделить их волновыми корпускуляр­ными свойствами, связанными между собой квантом действия (постоян­ной Планка ), – такая задача представлялась крайне необхо­димой и плодотворной… Необходимо создать новую механику волново­го характера, которая будет относиться к старой механике как вол­новая оптика к геометрической оптике", – писал де Бройль в книге "Революция в физике".

За открытие волновых свойств вещества Л. де Бройль в 1929 г. был удостоен Нобелевской премии.

Обратимся теперь к формальной стороне вопроса. Пусть мы имеем микрочастицу (например, электрон) с массой M , движущуюся в вакууме с постоянной скоростью . Пользуясь корпускулярным описанием, припишем частице энергию E и импульс в соответствии с формулами (рассмотрим общий случай релятивистской частицы).

. (1.2.1)

С другой стороны, в волновой картине мы используем понятия частоты и длины волны (или волнового числа ). Если оба описания являются различными аспектами одного и того же физическо­го объекта, то между ними должна быть однозначная связь. Следуя де Бройлю, перенесем на случай частиц вещества те же правила пере­хода от одной картины к другой, справедливые в применении к све­ту:

(1.2.2)

Соотношения (1.2.2) получили название Формул де Бройля . Длина волны, связанная с частицей, определяется выражением

(1.2.3)

Ее называют Длиной волны де Бройля . Нетрудно сообразить по аналогии со светом, что именно эта длина волны должна фигурировать в критериях применимости волновой или корпускулярной картин.

Наиболее простым типом волны в вакууме с определенной часто­той и волновым вектором является плоская монохроматическая волна

Квантовая природа света. Волновые свойства света, обна­руживаемые в явлениях интерференции и дифракции, и корпуску­лярные свойства света, проявляющиеся при фотоэффекте и эф­фекте Комптона, кажутся взаимно исключающими друг друга. Однако такие противоречия существовали лишь в классиче­ской физике. Квантовая теория полностью объясняет с единых позиций все свойства света. Характерной чертой квантовой теории света является объяснение всех явлений, в том числе и тех, ко­торые ранее казались объяснимыми лишь с позиций волновой теории. Например, явления интерференции и дифракции света квантовая теория описывает как результат перераспределения фотонов в пространстве.

Распределение фотонов в пучках света при интерференции и дифракции описывается статистическими законами, дающими те же результаты, что и волновая теория. Однако торжество современной квантовой теории в объяснении всех световых явле­ний не означает, что никаких волн в природе нет.

Волновые свойства электрона. Полному отказу от волновых представлений о природе света препятствуют не только сила традиции, удобство волновой теории и трудность современной квантовой теории. Есть и более серьезная причина. В 1924 г. французский физик Луи де Б рой ль впервые высказал идею, согласно которой одновременное проявление корпускулярных и волновых свойств присуще не только свету, но и любому дру­гому материальному объекту. Эта идея была лишь теоретиче­ской гипотезой, так как в то время наука не располагала экспери­ментальными фактами, которые бы подтверждали существование волновых свойств у элементарных частиц и атомов. В этом зак­лючалось существенное отличие гипотезы де Бройля о волновых свойствах частиц от гипотезы Эйнштейна о существовании фото­нов света, выдвинутой им после открытия явления фотоэффекта.

Гипотеза де Бройля существовании волн материи была детально разработа­на, и полученные из нее следствия могли быть подвергнуты экспериментальной проверке. Основное предположение де Бройля заключалось в том, что любой материальный объект обладает волновыми свойствами и длина волны связана с его импульсом таким же соотношением, ка­ким связаны между собой длина свето­вой волны и импульс фотона. Найдем выражение, связывающее импульс фото­на р с длиной волны света. Импульс фотона определяется формулой:

Л. Де Бройль

рис.1 рис. 2

Из уравнения

Е= m с 2 = hv (2)

можно определить массу фотона:

Учитывая это, можно формулу преобразовать так:

Отсюда получаем для длины световой волны формулу:

Если это выражение справедливо, как предположил де Бройль, для любого материального объекта, то длина волны тела мас­сой т, движущегося со скоростью v, может быть найдена так:

Первое экспериментальное подтверждение гипотезы де Брой-ля подучили в 1927 г. независимо друг от друга американские физики К. Д. Дэвиссон и Л. X. Джермер и английский физик Д. П. Томсон. Дэвиссон и Джермер изучали отражение электрон­ных пучков от поверхности кристаллов на установке, схема кото­рой изображена на рисунке 1. Перемещая приемник электро­нов по дуге окружности, центр которой находится в месте паде­ния электронного пучка на кристалл, они обнаружили сложную зависимость интенсивности отраженного пучка от угла рис. 2. Отражение излучения только под определенными углами означа­ет, что это излучение представляет собой волновой процесс и его избирательное отражение есть результат дифракции на атомах кристаллической решетки. По известным значениям постоянной кристаллической решетки и d угла дифракционного максимума можно по уравнению Вульфа - Брэггов

вычислить длину волны дифрагировавшего излучения и сопоставить ее с дебройлевской длиной волны электронов, вы­
численной по известному ускоряющему напряжению U:

Вычисленная таким образом из опытных данных длина волны совпала по значению с дебройлевской длиной волны.

Интересны результаты другого опыта, в котором пучок электронов направлялся на монокристалл, но расположение при­емника и кристалла не изменялось. При изменении ускоряющего напряжения, т. е. скорости электронов, зависимость силы тока через гальванометр от ускоряющего напряжения имела вид, представленный на рисунке 3. Электронный пучок испытывал наиболее эффективное отражение при скоростях частиц, удовлет­воряющих - условию дифракционного максимума.

Последующие эксперименты полностью подтвердили правиль­ность гипотезы де Бройля и возможность использования урав­нения (6) для расчета длины волны, связанной с любым материальным объектом. Обнаружена дифракция не только эле­ментарных частиц (электрон, протон, нейтрон), но и атомов.

Выполнив расчеты длины дебройлевской волны для различных материальных объектов, можно понять, почему мы не замечаем в повседневной жизни волновых свойств окружающих нас тел. Их длины волн оказываются столь малыми, что проявление волновых свойств невозможно обнаружить. Так, для пули массой 10 г, движущейся со скоростью 660 м/с, длина дебройлевской волны равна:

Дифракция электронов на решетке кристалла никеля стано­вится заметной лишь при таких скоростях движения электронов, при которых их дебройлевская длина волны становится сравни­мой с постоянной решетки.

рис. 3 рис. 4

При этом условии дифракционная картина, получаемая от электронного пучка, становится подоб­ной картине дифракции пучка рентгеновских лучей с такой же длиной волны. На рисунке 4 представлены фотографии дифрак­ционных картин, наблюдающихся при прохождении пучка света (а) и пучка электронов (б) у края экрана.

Гипотеза де Бройля и атом Бора. Гипотеза о волновой при­роде электрона позволила дать принципиально новое объяснение стационарным состояниям в атомах. Для того чтобы понять это объяснение, выполним сначала расчет длины дебройлевской волны электрона, движущегося по первой разрешенной круговой орбите в атоме водорода. Подставив в уравнение (6) выраже­ние для скорости электрона на первой круговой орбите, получим:

Это значит, что в атоме водорода, находящемся в первом стационарном состоянии, длина дебройлевской волны электрона в точности равна длине его круговой орбиты! Для любой другой орбиты с порядковым номером п получаем:

Этот результат позволяет выразить постулат Бора о стацио­нарных состояниях в такой форме: электрон вращается вокруг ядра неопределенно долго, не излучая энергии, если на его орби­те укладывается целое число длин волн де Бройля.

Такая формулировка постулата Бора соединяет в себе одно­временно утверждение о наличии у электрона волновых и корпус­кулярных свойств, отражая его двойственную природу. Соедине­ние волновых и корпускулярных свойств в этом постулате проис­ходит потому, что при расчете длины волны электрона исполь­зуется модуль скорости, полученный при расчете движения электрона как заряженной частицы по круговой орбите радиуса r.

Взаимные превращения света и вещества. Глубокое единст­во двух различных форм материи - вещества в виде различных элементарных частиц и электромагнитного поля в виде фотонов - обнаруживается не только в двойственной корпускулярно-волновой природе всех материальных объектов, но главным образом в том, что все известные частицы и фотоны взаимно превращаемы.

Самый известный пример взаимных превращений частиц - это превращение пары электрон - позитрон в два или три гамма-кванта. Этот процесс наблюдается при каждой встрече электрона с позитроном и называется аннигиляцией (т.е. исчезновением). При аннигиляции строго выполняются законы сохранения энер­гии, импульса, момента импульса и электрического заряда (элект­рон и позитрон обладают равными зарядами противоположного знака), но материя в форме вещества исчезает, превращаясь в материю в форме электромагнитного излучения.

Процесс, обратный аннигиляции, наблюдается при взаимо­действии гамма-квантов с атомными ядрами. Гамма-квант, энер­гия которого превышает энергию покоя Ео=2m 0 c 2 пары элект­ рон - позитрон , может превратиться в такую пару.

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png