Название Строение и особенности Ф-ии
1.ЭПС Соединенные между собой полости, трубочки и каналы. Выделают: А) гладкую;б)шероховатую имеет рибосомы Разделяет цитоплазму на изолированные пространства А)синтез липидов и углеродов Б)синтез белка
2.Аппарат Гольджи Это стобка из 5-ти 20-ти упращенных дисковидных полостей 1.накоплеение вещ-в 2.транспортировка вещ-в 3.трансформация вещ-в 4.образование лизосом
3.лизосомы Пузырки содержащие ферменты Переваривают вещ-ва части клеток, сами клетки
4.митахондрии Имеют наружную мембрану-гладкую, а внутренняя образует складки(кресты).Имеют собственную ДНК, способны к делению Синтез АТФ
5.Пластиды А)хлоропласты Имеют собственную ДНК наружная мембрана-гладкая. Внутренняя мембрана-образует плоские пузырьки (тилокоиды),которые собраны в стобки(краны).Содержат пигмент хлорофилл.Могут превращаться в хромопласты. фотосинтез
Б)Хромопласты Содержат каратиноиды(цветные пигменты) Придают окраску и плодам
В)Лейкопласты Бесцветные, могут превращаться в хлоропласты Накопление питательных вещ-в
6.Рибосомы Самые мелкие структуры в клетке, состоят из белка и РНК Синтез белка
Клеточный цикл Находятся в близи ядра, состоит из двух центриолей, перпендикулярных друг к другу Принимает участие в деление клетки
Органоиды движения Реснички, жгутики Осуществляют различные виды движения

Виды мутаций: генные, геномные, хромосомные.

Мутации – это изменения в ДНК клетки. Возникают под действием ультрафиолета, радиации (рентгеновских лучей) и т.п. Передаются по наследству, служат материалом для естественного отбора. отличия от модификаций

Генные мутации – изменение строения одного гена. Это изменение в последовательности нуклеотидов: выпадение, вставка, замена и т.п. Например, замена А на Т. Причины – нарушения при удвоении (репликации) ДНК. Примеры: серповидноклеточная анемия, фенилкетонурия.

Хромосомные мутации – изменение строения хромосом: выпадение участка, удвоение участка, поворот участка на 180 градусов, перенос участка на другую (негомологичную) хромосому и т.п. Причины – нарушения при кроссинговере. Пример: синдром кошачьего крика.

Геномные мутации – изменение количества хромосом. Причины – нарушения при расхождении хромосом.

Полиплоидия – кратные изменения (в несколько раз, например, 12 → 24). У животных не встречается, у растений приводит к увеличению размера.



Анеуплоидия – изменения на одну-две хромосомы. Например, одна лишняя двадцать первая хромосома приводит к синдрому Дауна (при этом общее количество хромосом – 47).

Строение и функции клеточного ядра. Хроматин. Хромосомы. Кариотип и его видовая специфичность. Соматические и половые клетки. Диплоидный и гаплоидный набор хромосом. Гомологичные и негомологичные хромосомы.

Ядро есть в любой эукариотической клетке. Ядро может быть одно, или в клетке могут быть несколько ядер (в зависимости от ее активности и функции).

Клеточное ядро состоит из оболочки, ядерного сока, ядрышка и хроматина. Ядерная оболочка состоит из двух мембран, разделенных перинуклеарным (околоядерным) пространством, между которыми находится жидкость. Основные функции ядерной оболочки: обособление генетического материала (хромосом) от цитоплазмы, а также регуляция двусторонних взаимоотношений между ядром и цитоплазмой.

Ядерная оболочка пронизана порами, которые имеют диаметр около 90 нм. Область поры (поровый комплекс) имеет сложное строение (это указывает на сложность механизма регуляции взаимоотношений между ядром и цитоплазмой). Количество пор зависит от функциональной активности клетки: чем она выше, тем больше пор (в незрелых клетках пор больше).

Основа ядерного сока (матрикса, нуклеоплазмы) – это белки. Сок образует внутреннюю среду ядра, играет важную роль в работе генетического материала клеток. Белки: нитчатые или фибриллярные (опорная функция), гетероядерные РНК (продукты первичной транскрипции генетической информации) и мРНК (результат процессинга).

Ядрышко – это структура, где происходят образование и созревание рибосомальных РНК (р-РНК). Гены р-РНК занимают определенные участки нескольких хромосом (у человека это 13–15 и 21–22 пары), где формируются ядрышковые организаторы, в области которых и образуются сами ядрышки. В метафазных хромосомах эти участки называются вторичными перетяжками и имеют вид сужений. Электронная микроскопия выявила нитчатый и зернистый компоненты ядрышек. Нитчатый (фибриллярный) – это комплекс белков и гигантских молекул-предшественниц р-РНК, которые дают в последующем более мелкие молекулы зрелых р-РНК. При созревании фибриллы превращаются в рибонуклеопротеиновые гранулы (зернистый компонент).



Хроматин получил свое название за способность хорошо прокрашиваться основными красителями; в виде глыбок он рассеян в нуклеоплазме ядра и является интерфазной формой существования хромосом.

Хроматин состоит в основном из нитей ДНК (40 % массы хромосомы) и белков (около 60 %), которые вместе образуют нуклеопротеидный комплекс. Выделяют гистоновые (пять классов) и негистоновые белки.

Хроматин -это несперелизованные молекулы ДНК, связанные с белком.О таком виде ДНК можно увидеть в неделящихся клетках.При этом возможно удвоение ДНК(репликация) и реализация наследственной информации.

Хромосомы -это спирализованные молекулы ДНК связанные с белкоми.ДНК сперализуется перед делением клетки для более точного распределения генетического материала.

Половые клетки -гаплоидные клетки, обеспечивающие сохранение и передачу генетической информации для будущего потомства.

Половые клетки всегда содержатся вдвое меньше хромосом чем в соматической.

Во всех соматических клетках любого живого организма число хромосом одинаково.

Кариотип - совокупность кол-ых и качественных признаков хромосом кого набора соматической клеток.

Диплоидный набор хромосом (двойной) в котором каждая хромосома имеет себе пару. Обозначается 2n.

Гаплоидный набор хромосом –хромосомный набор половых клеток.

Комбинированный урок с применением мультимедиа компонентов, позволяющих более полно раскрыть суть нового материала. В 9 классе тема строения клетки так подробно раскрывается впервые, поэтому целесообразно применить как можно больше различных методов и средств обучения, чтобы за сложностью материала не потерять познавательный интерес и внимание учеников.

Скачать:


Предварительный просмотр:

Подробный конспект урока.

Организационная информация

Тема урока

«Органоиды клетки: ЭПС, рибосомы, комплекс Гольджи, лизосомы, митохондрии, пластиды».

Предмет

Биология

Класс

9 класс

Гарькуша Наталья Владимировна

Образовательное учреждение

МОУ гимназия № 48

Федеральный округ России (или страна СНГ для участников ближнего зарубежья)

Приволжский ФО

Республика/край

РФ, Самарская обл.

Город/поселение

г. Тольятти

Методическая информация

Тип урока (мероприятия, занятия)

комбинированный

Цели урока (мероприятия, занятия)

(образовательные, развивающие, воспитательные)

Сформировать знания о строении клетки, развивать умения распознавать клеточные органоиды, характеризовать их строение и функции.

Задачи урока (мероприятия, занятия)

Формирование и закрепление знаний о строении органоидов клетки, формирование умения сопоставлять строение и выполняемые функции, развитие навыков самоконтроля, поддержание познавательной активности учеников.

Используемые педагогические технологии, методы и приемы

Элементы личностно ориентированной и развивающей педагогических технологий, методы контроля, самоконтроля, наглядного обучения.

Время реализации урока (мероприятия, занятия)

40 минут

Знания, умения, навыки и качества, которые актуализируют/приобретут/закрепят/др. ученики в ходе урока (мероприятия, занятия)

По ходу урока ученики должны

Получить знания о строении клетки эукариот,

Научиться распознавать клеточные структуры на иллюстрациях, таблицах, картинках,

Уметь соотносить особенности строения и выполняемые функции, -актуализировать имеющиеся знания о ядре и ядерных структурах.

Необходимое оборудование и материалы

Ноутбук, проектор, экран/ интерактивная доска, готовые мультимедиа материалы.

Дидактическое обеспечение урока (мероприятия, занятия)

Демонстрационные,обучающие, контролирующие ЭДМ, таблица «Строение клетки», иллюстрации учебника

Список учебной и дополнительной литературы

Учебник А.А. Каменского, Е.А. Криксунова, В.В. Пасечника « Введение в общую биологию и экологию» 9 класс;

Грин Н, Стаут У., Тейлор Д. Биология. Т. 1-3. М.: Мир, 1993.

С.Г. Мамонтов Биология для поступающих в вузы: Справ. издание.- М.: Высш. школа 1991

Ход и содержание урока (мероприятия, занятия),

деятельность учителя и учеников.

Мотивация учащихся

Учебная

Подробное описание всех этапов урока

1. Орг. момент

2. Проверка знаний учащихся по теме «Ядро» в форме «биологического диктанта» с использованием мультимедиа (презентация 1). На экран проецируется изображение ядра клетки, необходимо подписать его составляющие и их функции, последний слайд с биологическими терминами, которые нужно объяснить.

3. Изучение новой темы.

А) Классификация органоидов по наличию или отсутствию мембран (мембранные и немембранные, одномембранные и двумембранные);

Б) Знакомство с месторасположением, строением и выполняемыми функциями основных органоидов клетки (презентация 2), учитель демонстрирует очередной органоид, совместно с учениками выясняет особенности строения и выполняемые этой структурой функции (важно, чтобы ученики уяснили себе соответствие функции и строения);

В) По ходу знакомства с клеточными структурами учениками заполняется таблица:

Название органоида

Особенности строения

Функции

ЭПС и т.д.

4. Закрепление изученного материала (слайд-шоу), коллективное задание на установление соответствия между клеточными органоидами и их функциями (слайд I).

5. Домашнее задание: параграфы 2.4-2.5.

6. Итоги занятия.

Рефлексия деятельности на уроке (мероприятии, занятии)

Представлена п.6: в конце урока учащиеся определяют с какой темой познакомились, что узнали, что осталось непонятным.

Домашнее задание

Домашнее задание: параграфы 2.4-2.5.

В помощь учителю

Обоснование, почему данную тему оптимально изучать с использованием медиа-, мультимедиа, каким образом осуществить

Комбинированный урок с применением мультимедиа компонентов, позволяющих более полно раскрыть суть нового материала. В 9 классе тема строения клетки так подробно раскрывается впервые, поэтому целесообразно применить как можно больше различных методов и средств обучения, чтобы за сложностью материала не потерять познавательный интерес и внимание учеников.

Советы по логическому переходу от данного урока к последующим

На следующем уроке предстоит познакомиться с темой «Клеточный центр. Органоиды движения. Клеточные включения». Это будет продолжением общей темы «Клеточный уровень».

Митохондрии (см. Рис. 1) имеются во всех эукариотических клетках. Они участвуют в процессах клеточного дыхания и запасают энергию в виде макроэргических связей молекулы АТФ, то есть в доступной форме для большинства процессов, связанных с затратой энергии в клетке.

Впервые митохондрии в виде гранул в мышечных клетках наблюдал в 1850 г. Р. Кёлликер (швейцарский эмбриолог и гистолог). Позднее, в 1898 г., Л. Михаэлис (германский биохимик и химик-органик) показал, что они играют важную роль в дыхании.

Рис. 1. Митохондрии

Число митохондрий в клетках не постоянно, оно зависит от вида организма и типа клетки. В клетках, потребность которых в энергии велика, содержится много митохондрий (в одной печеночной клетке их может быть около 1000), в менее активных клетках митохондрий гораздо меньше. Чрезвычайно сильно варьируются также размеры и формы митохондрий. Они могут быть спиральными, округлыми, вытянутыми и разветвленными. Их длина колеблется от 1,5 мкм до 10 мкм, а ширина - от 0,25 до 1 мкм. В более активных клетках митохондрии крупнее.

Митохондрии способны изменять свою форму, а некоторые могут перемещаться в более активные участки клетки. Такое перемещение способствует накоплению митохондрий в тех местах клетки, где выше потребность в АТФ.

Каждая митохондрия окружена оболочкой, состоящей из двух мембран (см. Рис. 2). Наружную мембрану отделяет от внутренней небольшое расстояние (6-10 нм) - межмембранное пространство. Внутренняя мембрана образует многочисленные гребневидные складки - кристы. Кристы существенно увеличивают поверхность внутренней мембраны. На кристах происходят процессы клеточного дыхания, необходимые для синтеза АТФ. Митохондрии являются полуавтономными органеллами, содержащими компоненты, которые необходимы для синтеза собственных белков. Внутренняя мембрана окружает жидкий матрикс, в котором находятся белки, ферменты, РНК, кольцевые молекулы ДНК, рибосомы.

Рис. 2. Структура митохондрии

Митохондриальные заболевания - это группа наследственных заболеваний, связанных с дефектами функционирования митохондрий, а, следовательно, с нарушениями энергетических функций в клетках эукариот, в частности человека.

Митохондриальные заболевания передаются детям обоих полов по женской линии, поскольку зиготе от сперматозоида передается одна половина ядерного генома, а от яйцеклетки - вторая половина ядерного генома и митохондрии.

Эффекты таких заболеваний очень разнообразны. Из-за различного распределения дефектных митохондрий в разных органах у одного человека это может привести к заболеванию печени, у другого - к заболеванию мозга, причем болезнь может нарастать с течением времени. Небольшое количество дефектных митохондрий в организме может привести лишь к неспособности человека выдерживать физическую нагрузку, соответствующую его возрасту.

В общем случае митохондриальные заболевания проявляются серьезнее при локализации дефектных митохондрий в мозге, мышцах, клетках печени, так как эти органы требуют большого количества энергии для выполнения своих функций.

В настоящее время лечение митохондриальных заболеваний находится в стадии разработки, но распространенным терапевтическим методом служит симптоматическая профилактика с помощью витаминов.

Пластиды характерны исключительно для растительных клеток. Каждая пластида состоит из оболочки, состоящей из двух мембран. Внутри пластиды можно наблюдать сложную систему мембран и более или менее гомогенное вещество - строму. Пластиды являются полуавтомными органеллами, так как содержат белоксинтезирующий аппарат и могут частично обеспечить себя белком.

Пластиды обычно классифицируют на основании содержащихся в них пигментов. Различают три типа пластид.

1. Хлоропласты (см. Рис. 3) - это пластиды, в которых протекает фотосинтез. Они содержат хлорофилл и каротиноиды. Обычно хлоропласты имеют форму диска диаметром 4-5 мкм. В одной клетке мезофилла (середина листа) может находиться 40-50 хлоропластов, а в квадратном миллиметре листа - около 500 000.

Рис. 3. Хлоропласты

Внутренняя структура хлоропласта сложная (см. Рис. 4). Строма пронизана развитой системой мембран, имеющих форму пузырьков - тилакоидов. Тилакоиды образуют единую систему. Как правило, они собраны в стопки - граны, напоминающие столбики монет. Тилакоиды отдельных гран связаны между собой тилакоидами стромы, или ламеллами. Хлорофиллы и каротиноиды встроены в тилакоидные мембраны. В строме хлоропластов находятся кольцевые молекулы ДНК, РНК, рибосомы, белки, липидные капли. Там же происходят первичные отложения запасного полисахарида - крахмала, в виде крахмальных зерен.

Рис. 4. Структура хлоропласта

Крахмальные зерна - это временные хранилища продуктов фотосинтеза. Они могут исчезнуть из хлоропластов, если поместить растение на 24 часа в темноту. Появятся они снова через 2-3 часа, если вынести растение на свет.

Как известно, фотосинтез делится на две фазы: световую и темновую (см. Рис. 5). Световая фаза происходит на тилакоидах мембраны, а темновая - в строме хлоропласта.

Рис. 5. Фотосинтез

2. Хромопласты - пигментированные пластиды (см. Рис. 6). Они не содержат хлорофилл, но содержат каротиноиды, которые окрашивают плоды, цветки, некоторые корни и старые листья в красные, желтые и оранжевые цвета.

Хромопласты могут образовываться из хлоропластов, которые при этом теряют хлорофилл и внутренние мембранные структуры и начинают синтезировать каротиноиды. Такое происходит при созревании плодов.

Рис. 6. Хромопласты

3. Лейкопласты - непигментированные пластиды (см. Рис. 7). Некоторые из них могут накапливать крахмал, например амилопласты, другие могут синтезировать и накапливать белки или липиды.

На свету лейкопласты могут превращаться в хлоропласты. Так, например, происходит с клубнем картофеля, который содержит много лейкопластов, накапливающих крахмал. Если вынести клубень картофеля на свет, он позеленеет.

Рис. 7. Лейкопласт

Каротиноиды - это широко распространенная и многочисленная группа пигментов. К ним относятся вещества, которые окрашивают в желтый, оранжевый и красный цвета. Каротиноиды содержатся в цветках растений, в некоторых корнях, в созревающих плодах.

Каротиноиды синтезируются не только высшими растениями, но и водорослями, некоторыми бактериями, мицелиальными грибами и дрожжами.

Присутствуют каротиноиды в организмах некоторых членистоногих, рыб, птиц и млекопитающих, но они не синтезируются внутри организма, а поступают вместе с пищей. Например, розовая окраска фламинго обусловлена поеданием маленьких красных рачков, в которых содержатся каротиноиды.

В течение многих лет каротиноиды используются в практической деятельности человека. Они применяются в сельском хозяйстве, пищевой промышленности и в медицине. При добавлении бета-каротина в пищевой продукт он не только насыщает продукт определенным цветом (желтым), но и витаминизирует его (насыщает витамином А). В медицине каротин используется для лечения авитаминоза по витамину А.

По поводу происхождения эукариотических клеток большинство исследователей придерживается гипотезы симбиогинеза.

Идея о том, что эукариотическая клетка (клетка животных и растений) представляет собой симбиотический комплекс, была предложена Мережковским (русский ботаник, зоолог, философ, писатель), подтверждена Фаминцыным (русский ботаник), а гипотеза в ее современном виде представлена Линн Маргулис (американский биолог). Концепция состоит в том, что органеллы (например, митохондрии и пластиды), которые отличают эукариотическую клетку от прокариотической, изначально были свободноживущими бактериями и захвачены крупной клеткой прокариот, которая их не съела, а превратила в симбионтов. Далее к поверхности клетки-хозяина прикрепилась другая группа симбионтов - жгутикоподобных бактерий, которые резко увеличили подвижность хозяина, а соответственно, шансы на выживание.

Несмотря на то что эта гипотеза выглядит достаточно фантастичной, тем не менее в современном мире есть подтверждение того, что она имеет право на существование: у некоторых инфузорий в качестве симбионтов выступают хлореллы (одноклеточные водоросли), причем инфузории переваривают любую другую одноклеточную водоросль, которая попала в ее организм, кроме хлореллы.

Сходство митохондрий и хлоропластов со свободными прокариотическими клетками (со свободными бактериями)

1. У митохондрий и хлоропластов имеются кольцевые молекулы ДНК, что свойственно бактериальной клетке.

2. Митохондрии и хлоропласты имеют мелкие рибосомы, такие же как в прокариотической клетке.

3. Обладают белоксинтезирующим аппаратом.

Многие клетки способны к движению, причем механизмы двигательных реакций могут быть различными.

Различают такие типы движения: амебоидные движения (амеба и лейкоциты), ресничные движения (инфузория туфелька), жгутиковые движения (сперматозоиды), мышечные движения.

Жгутик всех эукариотических клеток имеет длину около 100 мкм. На поперечном срезе (см. Рис. 8) можно увидеть, что по периферии жгутика расположены 9 пар микротрубочек, а в центре - 2 микротрубочки.

Рис. 8. Поперечный срез жгутика

Все пары микротрубочек связаны между собой. Белок, осуществляющий это связывание, меняет свою конформацию за счет энергии, выделяющейся при гидролизе АТФ. Это приводит к тому, что пары микротрубочек начинают двигаться друг относительно друга, жгутик изгибается и клетка начинает движение.

Таков же механизм движения ресничек, длина которых составляет всего 10-15 мкм. Количество ресничек, в отличие от жгутиков, количество которых на поверхности клетки ограничено, может быть очень большим. Например, на поверхности одноклеточной инфузории-туфельки насчитывается до 15 000 ресничек, с помощью которых она может передвигаться со скоростью 3 мм/с.

Список литературы

  1. Каменский А.А., Криксунов Е.А., Пасечник В.В. Общая биология 10-11 класс Дрофа, 2005.
  2. Биология. 10 класс. Общая биология. Базовый уровень / П.В. Ижевский, О.А. Корнилова, Т.Е. Лощилина и др. - 2-е изд., переработанное. - Вентана-Граф, 2010. - 224 стр.
  3. Беляев Д.К. Биология 10-11 класс. Общая биология. Базовый уровень. - 11-е изд., стереотип. - М.: Просвещение, 2012. - 304 с.
  4. Агафонова И.Б., Захарова Е.Т., Сивоглазов В.И. Биология 10-11 класс. Общая биология. Базовый уровень. - 6-е изд., доп. - Дрофа, 2010. - 384 с.
  1. Biouroki.ru ().
  2. Youtube.com ().
  3. Humbio.ru ().
  4. Beaplanet.ru ().
  5. School.xvatit.com ().

Домашнее задание

  1. Вопросы в конце параграфа 17 (стр. 71) - Каменский А.А., Криксунов Е.А., Пасечник В.В. «Общая биология», 10-11 класс ()
  2. От чего зависит количество митохондрий в клетке?
  3. Докажите, что предки митохондрий когда-то были свободноживущими существами, напоминающими бактерии.

1. Строение и функции лизосом

Лизосомы – мелкие округлые тельца, одномембранные. В лизосомах находятся большой набор ферментов, которые способны расщеплять поступившие в клетку питательные вещества. Формируются лизосомы в комплексе В 1949 году де Дювон описал лизосомы.

Когда в клетку путем фагоцитоза или пиноцитоза попадают различные питательные вещества, то их необходимо переварить. При этом белки должны разрушиться отдельных аминокислот, полисахариды до отдельных молекул глюкозы или фруктозы, липиды – до гликогена и жирных кислот. Чтобы внутриклеточное переваривание стало возможным, фагоцитарный и пиноцитарный пузырек должен слиться с лизосомой.

Благодаря лизосомам питательные вещества не теряются, а превращаются и расходуются на формирование новых органов. Например у лягушек лизосомы постепенно переваривают все клетки хвоста головастиков при его превращении в лягушку.

2. Строение и функции митохондрий.

Митохондрии отграничены от цитоплазмы 2 мембранами, имеют вид мелких зерен, которые располагаются в цитоплазме хаотично или упорядочено. Количество митохондрий в клетке прямо пропорционально функциональной активности клетки.

Внешняя мембрана отграничивает внутреннее содержимое митохондрии – матрикс. Внутренняя мембрана складчатая – образует кристы (складки). Содержимое митохондрий представлено гомогенным веществом, в котором много белков, ферментов, фосфолипидов, молекул ДНК, имеющих кольцевую структуру, немного рибосом.

Функции митохондрий:

1. участвуют в обмене веществ, так как содержат ферменты.

2. участвуют в процессе дыхания, синтезе молекул АТФ.

3. осуществление синтеза белка, так как имеют свою специфическую ДНК.

4. Строение и функции пластид. (Объяснение учителя с элементами беседы и использованием таблиц и рис. 27 на стр. 54).

Пластиды – органоиды, присущие только растительным клеткам.

ВОПРОС: Перечислите известные вам виды пластид. (Хлоропласты, хромопласты, лейкопласты, у низших растений вместо пластид имеются хроматофоры).

У высших растений один вид пластид может переходить в другой.

Подробнее познакомимся со строением и функциями хлоропластов.

Хлоропласты имеют 2 мембраны: наружную и внутреннюю. Внутренняя мембрана образует выросты внутрь хлоропласта – ламеллы. Совокупность ламелл хлоропласта наз. стромой. Ламеллы могут в ряде мест образуют локальные расширения, имеющие вид уплощенных мешочков – тилакоидов. Тилакоиды располагаются стопками, один над другим, напоминая стопки монет. Эти стопки наз гранами. Пигиент хлорофилл располагается внутри мембран тилакоида.

Функция хлоропластов: фотосинтез.

У лейкопластов стромы нет. У хромопластов строма развита несколько хуже, чем у хлоропластов.

Как и митохондрии, пластиды содержат собственные молекулы ДНК. Поэтому они также способны самостоятельно размножаться, независимо от деления клетки.

«Строение и функции органоидов клетки

Одной из важнейших составляющих клетки являются микротрубочки – полые цилиндрические структуры, которые поддерживают форму клетки, создавая цитоскелет. Они связаны с цитоплазматической и ядерной мембранами, обеспечивают движение внутриклеточных структур, входят в состав органоидов движения и клеточного центра.

Клеточный центр играет важную роль в формировании цитоскелета – внутреннего скелета клетки, образованного системой микротрубочек и пучков белковых волокон, тесно связанных с наружной мембраной и ядерной оболочкой и выходящих из области клеточного центра.

Строение клеточного центра : представлен двумя центриолями, расположено перпендикулярно друг к другу. Каждая центриоль состоит из цилиндра, образованного девятью триплетами трубочек, связанных между собой.

Значение : принимает участие в делении клетки, образуя нити веретена деления.

ОРГАНОИДЫ ДВИЖЕНИЯ

СРАВНЕНИЕ КЛЕТОК РАСТЕНИЙ И ЖИВОТНЫХ

КЛЕТОЧНЫЙ ЦЕНТР. ОРГАНОИДЫ ДВИЖЕНИЯ. КЛЕТОЧНЫЕ ВКЛЮЧЕНИЯ

Клеточный центр расположен в цитоплазме всех клеток вблизи от ядра. Он играет важную роль в формировании внутреннего скелета клетки – цитоскелета. Из клеточного центра расходится множество микротрубочек, поддерживающих форму клетки и играющих роль своеобразных рельсов для движения органоидов по цитоплазме.

Велика роль клеточного центра при делении клеток, когда центриоли расходятся к полюсам делящейся клетки и образуют веретено деления.

У высших растений клеточный центр устроен по другому, центриоли не образуются.

1. Органоиды движения, их строение и функции. (Объяснение учителя с элементами беседы и использованием таблиц и рис. 29 на с. 57 учебника)

Некоторые клетки способны к движению, например инфузория туфелька, амеба, эвглена зеленая. Двигаются они при помощи особых органоидов – ресничек и жгутиков.

Жгутики имеют большую длину (сперматозоиды млекопитающих) они достигают 100 мкм. Реснички гораздо короче. Внутреннее строение ресничек и жгутиков одинаково: они образованы такими же микротрубочками, как центриоли клеточного центра. В основании каждой реснички и жгутика лежит базальное тельце, которое укрепляет их в цитоплазме клетки. На работу жгутиков и ресничек расходуется энергия АТФ.

Органоиды движения часто встречаются и у клеток многоклеточных организмов. Например, эпителий бронхов человека покрыт множеством ресничек. Все реснички каждой эпителиальной клетки двигаются строго согласованно, образуя своеобразные волны, хорошо заметные под микроскопом. Это приспособление к очистке бронхов от инородных частиц и пыли. Жгутики есть у таких специализированных клеток как сперматозоиды.

2. Клеточные включения, их отличия от органоидов движения и роль в клетке. (Объяснение учителя)

Помимо обязательно имеющихся органоидов, в клетке есть образования то появляющиеся, то исчезающие в зависимости от ее состояния. Эти образования наз. клеточные включения. Чаще всего клеточные включения находятся в цитоплазме и представляют собой питательные вещества или гранулы веществ, синтезируемые этой клеткой. Это могут быть мелкие капли жира, гранулы крахмала или гликогена, реже – гранулы белка, кристаллы солей.

БАКТЕРИИ

Особенности строения и жизнедеятельности бактерий :

1. Снаружи клетку окружает плотная оболочка.

2. В цитоплазме находится очень много рибосом.

3. Впячивания цитоплазматической мембраны выполняют функции многих органоидов.

4. Имеются включения, содержащие запасные питательные вещества.

5. Носитель наследственного материала – ДНК или РНК – часто замкнут в виде кольца и не образует оформленного ядра.

6. Размножаются путем деления. Которое наступает после удвоения бактериальной хромосомы – кольцевой ДНК – или после полового процесса, протекающего в форме обмена генетическим материалом между особями.

7. При неблагоприятных условиях образуют споры.

9. Значение.

РОЛЬ БАКТЕРИЙ В ЖИЗНИ ЧЕЛОВЕКА

ОСНОВНЫЕ РАЗЛИЧИЯ МЕЖДУ ПРОКАОТАМИ И ЭУКАРИОТАМИ

Характеристика Прокариоты Эукариоты
Размеры клеток Диаметр 0,5 – 5 мкм Диаметр до 40 мкм, объем в 1000 – 10000 раз больше, чем у прокариот
Генетический материал Кольцевая ДНК находится в цитоплазме, нет ядра, хромосом, ядрышка Молекулы ДНК связаны с белками и образуют хромосомы внутри оформленного ядра, там же есть ядрышко
Органоиды Органоидов мало. Не имеется двумембранных органоидов. Внутренние мембраны встречаются редко; если они есть, на них протекают процессы дыхания или фотосинтеза Немембранные – рибосомы, микротрубочки, клеточный центр. Одномембранные – комплекс Гольджи, лизосомы, вакуоли. Двумембранные – ЭПС, митохондрии, пластиды.
Клеточные стенки Жесткие, содержат полисахариды и аминокислоты. Основной арматурный компонент – муреин. У растений и грибов жесткие, содержат полисахариды. Основной арматурный компонент у растений – целлюлоза, у грибов – хитин.
Фотосинтез Хлоропластов нет. Происходит на мембранах, без специфической упаковки Происходит в специализированных органоидах – пластидах, имеющих специализированное строение
Фиксация азота Некоторые обладают этой способностью Ни один эукариотический организм не способен к фиксации азота

«Различия в строении клеток эукариот и прокариот»

АССИМИЛЯЦИЯ И ДИССИМИЛЯЦИЯ. МЕТАБОЛИЗМ.

Обмен веществ складывается из 2 взаимосвязанных процессов – анаболизма и катаболизма.

МЕТАБОЛИЗМ

1. в ходе ассимиляции происходит биосинтез сложных молекул из простых молекул – предшественников или из молекул веществ, поступивших из внешней среды.

2. Важнейшими процессами ассимиляции являются синтез белков и нуклеиновых кислот (свойственны всем организмам) и синтез углеводов (только у растений, некоторых бактерий и цианобактерий).

3. В процессе ассимиляции при образовании сложных молекул идет накопление энергии, главным образом в виде химических связей.

1. При разрыве химических связей в молекулах органических соединений энергия высвобождается и запасается в виде молекул АТФ.

2. Синтез АТФ у эукариот происходит в митохондриях и хлоропластах, у прокариот – в цитоплазме, на мембранных структурах.

3. Диссимиляция обеспечивает все биохимические процессы в клетке энергией.

ЭТАПЫ ЭНЕРГЕТИЧЕСКОГО ОБМЕНА

Название этапа, локализация в организме Особенности протекания этапов Энергетическая ценность
ПОДГОТОВИТЕЛЬНЫЙ (в органах пищеварения) Молекулы сложных органических веществ расщепляются под действием ферментов на более мелкие: белки – аминокислоты, углеводы – глюкоза, жиры – глицерин и жирные кислоты Небольшое количество энергии рассеивается в виде тепла
БЕСКИСЛОРОДНЫЙ (неполный) гликолиз; у микроорганизмов - брожение Дальнейшее расщепление молекул (при участии ферментов) до более простых соединений. Так, глюкоза распадается на 2 молекулы пировиноградной кислоты (С3Н4О3), которая затем восстанавливается в молочную кислоту (С3Н6О3); в реакциях участвуют Н3РО4 и АДФ: У дрожжевых грибов – спиртовое брожение При расщеплении глюкозы 60% выделяющейся энергии превращается в тепло; 40% идет на синтез 2 молекул АТФ – эта часть энергии запасается
КИСЛОРОДНЫЙ (протекает в матриксе митохондрий и на внутренних мембранах) При доступе кислорода к клеткам образовавшиеся на предыдущем этапе вещества окисляется до СО2 и Н2О Образовавшиеся молекулы АТФ выходят за пределы митохондрий и участвуют во всех процессах клетки, где необходима энергия При окислении 2 молекул молочной кислоты образуется 36 молекул АТФ

Энергию (АТФ) живые существа могут получить несколькими способами: фотосинтез (1 этап) и путем окисления органических веществ.

АТФ обеспечивает энергией все функции клетки: механическую работу, биосинтез веществ, деление и т. д. синтез АТФ главным образом происходит в митохондриях. Как вы помните на синтез 1 моля АТФ из АДФ необходимо 40 кДж Е.

Энергетический обмен в клетке подразделяют на 3 этапа.

Первый этап – подготовительный. Во время него крупные пищевые полимерные молекулы распадаются на более мелкие фрагменты. Полисахариды распадаются до моносахаридов, белки – до аминокислот, жиры – до глицерина и жирных кислот. В ходе этих превращений энергии выделяется мало, она рассеивается в виде тепла, и АТФ не образуется.

Второй этап – неполное бескислородное расщепление веществ. На этом этапе вещества, образующиеся во время подготовительного этапа, разлагаются при помощи ферментов в отсутствие кислорода. Разберем этот этап на примере гликолиза – ферментативного расщепления глюкозы. Гликолиз происходит в животных клетках и у некоторых микроорганизмов. Суммарно этот процесс можно представить в виде следующего уравнения:

С6Н12О6 + 2Н3РО4 + 2АДФ = 2С3Н6О3 + 2АТФ + 2Н2О

Таким образом, при гликолизе из одной молекулы глюкозы образуется 2 молекулы трехуглеродной пировиноградной кислоты (С3Н4О3), которая во многих клетках, например в мышечных, превращается в молочную кислоту (С3Н6О3), причем высвободившиеся при этом энергии достаточно для превращение двух молекул АДФ в 2 молекулы АТФ. Несмотря на кажущуюся простоту, гликолиз – процесс многоступенчатый, насчитывающий более 10 стадий, катализируемых разными ферментами. Только 40% выделяющейся энергии запасается клеткой в виде АТФ, а остальные 60% - рассеивается в виде тепла. Благодаря многостадийности гликолиза выделяющиеся небольшие порции тепла не успевает нагреть клетку до опасного уровня. Гликолиз происходит в цитоплазме клетки.

У большинства растительных клеток и некоторых грибов второй этап энергетического обмена представлен спиртовым брожением :

С6Н12О6 + 2Н3РО4 + 2АДФ = 2С3Н5ОН + 2СО2 + 2АТФ + 2Н2О

Исходные продукты спиртового брожения те же, что и у гликолиза, но в результате образуется этиловый спирт, углекислый газ, вода и 2 молекулы АТФ. Есть такие микроорганизмы, которые разлагают глюкозу до ацетона, уксусной кислоты и других веществ, но в любом случае «энергетическая прибыль» клетки составляет 2 молекулы АТФ.

Третий этап энергетического обмена – полное кислородное расщепление, или клеточное дыхание. При этом вещества, образованные на втором этапе, разрушаются до конечных продуктов – СО2 и Н2О. этот этап можно представить себе в следующем виде:

2С3Н6О3 + 6О2 + 36Н3РО4 +36АДФ = 6СО2 + 42Н2О + 36 АТФ

Таким образом, окисление 2 молекул трехугольной кислоты, образовавшихся при ферментативном расщеплении глюкозы до СО2 и Н2О, приводит к выделению большого количества энергии, достаточного для образования 36 молекул АТФ.

Клеточное дыхание происходит в кристах митохондрий. Коэффициент полезного действия этого процесса выше, чем у гликолиза, и составляют приблизительно 55%. В результате полного расщепления одной молекулы глюкозы образуется 38 молекул АТФ.

Для получения энергии в клетках, кроме глюкозы, могут быть использованы и другие вещества: липиды, белки. Однако ведущая роль в энергетическом обмене у большинства организмов принадлежит сахарам.


Похожая информация.


Тема: Лизосомы. Митохондрии. Пластиды

Цель: познакомить учащихся со стро­ением и функциями лизосом, митохондрий и пластид.

Ход урока

I . Оргмомент урока

II . Повторение и закрепление материала

1. Строение и функции эндоплазматической сети. Строение и функции комплекса Голъджи.

(Ответы учащихся у доски.)

2.

    Почему в эритроцитах аппарат Гольджи отсутст­вует?

    Какую функцию выполняют рибосомы? Почему большинство рибосом расположены на каналах эндоплазматической сети?

    Какое строение имеют АТФ? Почему АТФ назы­вают универсальным источником энергии для всех реакций, протекающих в клетке?

3. «Немой» биологический диктант

(Учитель указкой показывает по табл. органоиды клетки, а ученики записывают в тетрадях названия органоидов)

1 - ядро, 2 – ядрышко, 3 – ЭПС, 4 – ЭПС шероховатая, 5 – клеточная мембрана, 6 –цитоплазма, 7 – рибосома

III . Изучение нового материала

    Строение и функции лизосом.

Ребята, давайте вспомним, какими способами различные вещества могут проникать внутрь клетки? (пиноцитоз и фагоцитоз)

Чем пиноцитоз отличается от фагоцитоза?

Когда в клетку путем фагоцитоза или пиноцитоза попадают различные питательные вещества, их необхо­димо переварить. При этом белки должны разрушиться до отдельных аминокислот, полисахариды - до молекул глю­козы или фруктозы, липиды - до глицерина и жирных кислот. Чтобы внутриклеточное переваривание стало воз­можным, фагоцитарный или пиноцитарный пузырек дол­жен слиться с лизосомой.

(демонстрация схемы переваривания клеткой пищевой частицы при помощи лизосомы)

Лизосома - маленький пузырек, диаметром всего 0,5-1,0 мкм, содержащий в себе большой набор ферментов, способных разрушать пищевые вещества. В одной лизосоме могут находиться 30-50 раз­личных ферментов. Лизосомы окружены мембраной, спо­собной выдержать воздействие этих ферментов. Формиру­ются лизосомы в комплексе Гольджи. Именно в этой струк­туре накапливаются синтезированные пищеварительные ферменты, а затем от цистерн комплекса Гольджи отходят в цитоплазму мельчайшие пузырьки - лизосомы. Иногда лизосомы разрушают и саму клетку, в которой образова­лись. Так, например, лизосомы постепенно переварива­ют все клетки хвоста головастика при его превращении в лягушку. Таким образом, питательные вещества не теря­ются, а расходуются на формирование новых органов у ля­гушки.

2. Строение и функции митохондрий.

В цитоплазме расположены также мито­хондрии - энергетические органоиды клеток

(демонстрация схемы строения митохондрии)

Фор­ма митохондрий различна - они могут быть овальными, округлыми, палочковидными. Диаметр их около 1 мкм, а длина - до 7 - 10 мкм. Митохондрии покрыты двумя мембранами: наружная мембрана гладкая, а внутренняя имеет многочисленные складки и выступы - кристы. В мембрану крист встроены ферменты, синтезирующие за счет энергии питательных веществ, поглощенных клеткой, молекулы аденозинтрифосфата (АТФ). АТФ - это универ­сальный источник энергии для всех процессов, происходя­щих в клетке. Количество митохондрий в клетках различных живых существ и тканей неодинаково. Например, в сперматозоидах может быть всего одна митохондрия. Зато в клетках тканей, где велики энергетические затраты, этих орга­ноидов бывает до нескольких тысяч. Например, их очень много в клетках летательных мышц у птиц, в клетках пе­чени. Количество митохондрий в клетке зависит и от ее возраста: в молодых клетках митохондрий гораздо больше, чем в стареющих. Эти структуры содержат собствен­ную ДНК и могут самостоятельно размножаться. Так, например, перед делением клетки число митохондрий в ней возрастает таким образом, чтобы их хватило на две клетки.

Строение и функции пластид

Ребята, как вы думаете, почему листья деревьев имеют разную окраску (зеленую, желтую, красную, фиолетовую)?

(листья деревьев содержат различные пигменты)

Пластиды - это органоиды растительных клеток. В за­висимости от окраски пластиды делят на лейкопласты, хлоропласты и хромопласты. Так же как митохондрии, они имеют двухмембранное строение (демонстрация схемы строения хлоропласта)

Лейкопласты бесцветны и находятся обычно в неосвещаемых частях растений, например в клубнях картофеля. В них происходит накопление крахмала. На свету в лейко­пластах образуется зеленый пигмент хлорофилл, поэтому клубни картофеля зеленеют. Основная функция зеленых пластид - хлоропластов - фотосинтез, т. е. превращение энергии солнечного света в энергию макроэргических связей АТФ и синтез за счет этой энергии углеводов из углекислого газа воздуха. Боль­ше всего хлоропластов в клетках листьев. Размер хлороплас­тов 5-10 мкм. По форме они могут напоминать линзу или мяч для игры в регби. Под наружной гладкой мембраной на­ходится складчатая внутренняя мембрана. Между складка­ми мембран находятся стопки связанных с ней пузырьков. Каждая отдельная стопка таких пузырьков называется гра­ней. В одном хлоропласте может быть до 50 гран, которые расположены в шахматном порядке, чтобы до каждой из них мог доходить свет солнца. В мембранах пузырьков, образую­щих граны, находится хлорофилл, необходимый для пре­вращения энергии света в химическую энергию АТФ. Во внутреннем пространстве хлоропластов между гранами про­исходит синтез углеводов, на который и расходуется энер­гия АТФ. Обычно в одной клетке листа растения находится от 20 до 100 хлоропластов.

В хромопластах содержатся пигменты красного, оран­жевого, фиолетового, желтого цветов. Этих пластид осо­бенно много в клетках лепестков цветков и оболочек пло­дов.

Как и митохондрии, пластиды содержат собственные мо­лекулы ДНК. Поэтому они также способны самостоятельно размножаться, независимо от деления клетки.

Лейкопласты хлоропласты хромопласты

IV . Закрепление материала

1. Фронтальная беседа по вопросам:

    Какую функцию в клетке выполняют лизосомы?

    Что может произойти, если лизосома в одной из клеток внезапно разрушится?

    Какова функция митохондрий?

    Какие виды пластид вы знаете?

    Какова основная функция хлоропластов?

    В чем сходство митохондрий и пластид?

2. Работая с текстом учебника, продолжить заполнение таблицы «Строение и функции органоидов клетки».

Особенности строения

Выполняемые функции

Лизосомы

Небольшой пузырек, ок­руженный мембраной

Пищеваритель­ная

Митохонд­рии

Форма различная. Покрыты наружной и внут­ренней мембранами. Внутренняя мембрана имеет многочисленные складки и выступы - кристы

Синтезирует мо­лекулы АТФ. Обеспечивает клетку энергией при распаде АТФ

Пластиды:

лейкопласты

хлоропласты хромопласты

Тельца, окруженные двойной мембраной

Бесцветные

Красные, оранжевые, желтые

Накапливают крахмал

Фотосинтез

Накапливают каратиноиды



V . Задание на дом

Изучить § 2.5 «Лизосомы. Митохондрии. Пласти­ды», ответить на вопросы в конце параграфа.

Итоги урока (выставление оценок)

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png