В дифференциальном исчислении решается задача:под анной функции ƒ(х) найти ее производную (или дифференциал). Интегральное исчисление решает обратную задачу: найти функцию F(x), зная ее производную F " (x)=ƒ(х) (или дифференциал). Искомую функцию F(x) называют первообразной функции ƒ(х) .

Функция F(x) называетсяпервообразной функции ƒ(х) на интервале (а; b), если для любого х є (а;b) выполняется равенство

F " (x)=ƒ(x) (или dF(x)=ƒ(x)dx).

Например , первообразной функции у=х 2 , х є R, является функция, так как

Очевидно, что первообразными Будут также любые функции

где С - постоянная, поскольку

Tеоpeмa 29. 1. Если функция F(x) является первообразной функции ƒ(х) на (а;b), то множество всех первообразных для ƒ(х) задается формулой F(x)+С, где С - постоянное число.

▲ Функция F(x)+С является первообразной ƒ(х).

Действительно, (F(x)+C) " =F " (x)=ƒ(x).

Пусть Ф(х) - некоторая другая, отличная от F(x), первообразная функции ƒ(х) , т. е. Ф " (x)=ƒ(х). Тогда для любого х є (а;b) имеем

А это означает (см. следствие 25. 1), что

где С - постоянное число. Следовательно, Ф(х)=F(x)+С.▼

Множество всех пepвoобpaзныx функций F(x)+С для ƒ(х) называетсянеопределенным интегралом от функции ƒ(х) и обозначается символом∫ ƒ(х) dx.

Таким образом, по определению

∫ ƒ(x)dx= F(x)+C.

Здесь ƒ(х) называетсяподынтегральнoй функцией , ƒ(x)dx — подынтегральным выражением, х -переменной интегрирования , ∫ -знаком неопределенного интеграла .

Операция нахождения неопределенного интеграла от функции называется интегрированием этой функции.

Геометрически неопределенный интеграл представляет собой семейство «параллельных» кривых у=F(x)+C (каждому числовому значению С соответствует определенная кривая семейства) (см. рис. 166). График каждой первообразной (кривой) называетсяинтегральной кривой .

Для всякой ли функции существует неопределенный интеграл?

Имеет место теорема, утверждающая, что «всякая непрерывная на (а;b) функция имеет на этом промежутке первообразную», а следoвaтельно, и неопределенный интеграл.

Отметим ряд свойств неопределенного интеграла, вытекающих из его определения.

1. Дифференциал от неопределенного интеграла равен подынтегральному выражению, а производная неопределенного интеграла равна подынтегральной функции:

d(ƒ(x)dx)=ƒ(x)dх, (ƒ(x)dx) " =ƒ(х).

Дeйcтвительнo, d(∫ ƒ(х) dx)=d(F(x)+С)=dF(x)+d(C)=F " (x) dx =ƒ(х) dx

(ƒ (x) dx) " =(F(x)+C)"=F"(x)+0 =ƒ (x).

Блaгoдapя этому свойству правильность интегрирования проверяется дифференцированием. Например, равенство

∫(3x 2 + 4) dx=х з +4х+С

верно, так как (х 3 +4х+С)"=3x 2 +4.

2. Hеопpедeлeнный интеграл от диффepeнциaла некоторой функции равен сумме этой функции и произвольной постоянной:

∫dF(x)= F(x)+C.

Действительно,

3. Постоянный множитель можно выносить за знак интеграла:

α ≠ 0 - постоянная.

Действительно,

(положили С 1 /а=С.)

4. Неопределенный интеграл от aлгeбpaическoй суммы конечного числа непрерывных функций равен aлгебpaичecкoй сумме интегралов от слагаемых функций:

Пусть F"(x)=ƒ(х) и G"(x)=g(x). Тогда

где С 1 ±С 2 =С.

5. (Инвариантность формулы интегрирования).

Если, где u=φ(х) - произвольная функция, имеющая непрерывную производную.

▲ Пусть х - независимая переменная, ƒ(х) - непрерывная функция и F(x) - ее пepвoобpaзнaя. Тогда

Положим теперь u=ф(х), где ф(х) - непрерывно-дифференцируемая функция. Рассмотрим сложную функцию F(u)=F(φ(x)). В силу инвараинтности формы первого дифференциала функции (см. с. 160) имеем

Отсюда▼

Таким образом, формула для неопределенного интеграла остается справедливой независимо от того, является ли переменная интегрирования независимой переменной или любой функцией от нее, имеющей непрерывную производную.

Так, из формулыпутем замены х на u (u=φ(х))получаем

В частности,

Пример 29.1. Найти интеграл

где С=C1+С 2 +С 3 +С 4 .

Пример 29.2. Найти интеграл Решение:

  • 29.3. Таблица основных неопределенных интегралов

Пользуясь тем, что интегрирование есть действие, обратное дифференцированию, можно получить таблицу основных интегралов путем обращения соответствующих формул диффepeнциaльнoгo исчисления (таблица дифференциалов) и использования свойств неопределенного интеграла.

Например , так как

d(sin u)=cos u . du,

Вывод ряда формул таблицы будет дан при рассмотрении основных методов интегрирования.

Интегралы в приводимой ниже таблице называются табличными. Их следует знать наизусть. В интегральном исчислении нет простых и универсальных правил отыскания первообразных от элементарных функций, как в дифференциальном исчислении. Методы нахождения пepвoобpaзных (т. е. интегрирования функции) сводятся к указанию приемов, приводящих данный (искомый) интеграл к табличному. Следовательно, необходимо знать табличные интегралы и уметь их узнавать.

Отметим, что в таблице основных интегралов переменная интегрирования и может обозначать как независимую переменную, так и функцию от независимой переменной (coгласнo свойству инвариантности формулы интeгpиpoвания).

В справедливости приведенных ниже формул можно убедиться, взяв диффepeнциaл правой части, который будет равен подынтегральному выражению в левой части формулы.

Докажем, например, справедливость формулы 2. Функция 1/u определена и непрерывна для всех значений и, отличных от нуля.

Если u > 0, то ln|u|=lnu, тогда Поэтому

Eсли u<0, то ln|u|=ln(-u). Но Значит

Итак, формула 2 верна. Aнaлoгичнo, провepим формулу 15:

Таблица оснoвныx интегралов



Друзья! Приглашаем вас к обсуждению. Если у вас есть своё мнение, напишите нам в комментарии.

Данная статья подробно рассказывает об основных свойствах определенного интеграла. Они доказываются при помощи понятия интеграла Римана и Дарбу. Вычисление определенного интеграла проходит, благодаря 5 свойствам. Оставшиеся из них применяются для оценивания различных выражений.

Перед переходом к основным свойствам определенного интеграла, необходимо удостовериться в том, что a не превосходит b .

Основные свойства определенного интеграла

Определение 1

Функция y = f (x) , определенная при х = а, аналогично справедливому равенству ∫ a a f (x) d x = 0 .

Доказательство 1

Отсюда видим, что значением интеграла с совпадающими пределами равняется нулю. Это следствие интеграла Римана, потому как каждая интегральная сумма σ для любого разбиения на промежутке [ a ; a ] и любого выбора точек ζ i равняется нулю, потому как x i - x i - 1 = 0 , i = 1 , 2 , . . . , n , значит, получаем, что предел интегральных функций – ноль.

Определение 2

Для функции, интегрируемой на отрезке [ a ; b ] , выполняется условие ∫ a b f (x) d x = - ∫ b a f (x) d x .

Доказательство 2

Иначе говоря, если сменить верхний и нижний предел интегрирования местами, то значение интеграла поменяет значение на противоположное. Данное свойство взято из интеграла Римана. Однако, нумерация разбиения отрезка идет с точки х = b .

Определение 3

∫ a b f x ± g (x) d x = ∫ a b f (x) d x ± ∫ a b g (x) d x применяется для интегрируемых функций типа y = f (x) и y = g (x) , определенных на отрезке [ a ; b ] .

Доказательство 3

Записать интегральную сумму функции y = f (x) ± g (x) для разбиения на отрезки с данным выбором точек ζ i: σ = ∑ i = 1 n f ζ i ± g ζ i · x i - x i - 1 = = ∑ i = 1 n f (ζ i) · x i - x i - 1 ± ∑ i = 1 n g ζ i · x i - x i - 1 = σ f ± σ g

где σ f и σ g являются интегральными суммами функций y = f (x) и y = g (x) для разбиения отрезка. После перехода к пределу при λ = m a x i = 1 , 2 , . . . , n (x i - x i - 1) → 0 получаем, что lim λ → 0 σ = lim λ → 0 σ f ± σ g = lim λ → 0 σ g ± lim λ → 0 σ g .

Из определения Римана это выражение является равносильным.

Определение 4

Вынесение постоянного множителя за знак определенного интеграла. Интегрируемая функция из интервала [ a ; b ] с произвольным значением k имеет справедливое неравенство вида ∫ a b k · f (x) d x = k · ∫ a b f (x) d x .

Доказательство 4

Доказательство свойства определенного интеграла аналогично предыдущему:

σ = ∑ i = 1 n k · f ζ i · (x i - x i - 1) = = k · ∑ i = 1 n f ζ i · (x i - x i - 1) = k · σ f ⇒ lim λ → 0 σ = lim λ → 0 (k · σ f) = k · lim λ → 0 σ f ⇒ ∫ a b k · f (x) d x = k · ∫ a b f (x) d x

Определение 5

Если функция вида y = f (x) интегрируема на интервале x с a ∈ x , b ∈ x , получаем, что ∫ a b f (x) d x = ∫ a c f (x) d x + ∫ c b f (x) d x .

Доказательство 5

Свойство считается справедливым для c ∈ a ; b , для c ≤ a и c ≥ b . Доказательство проводится аналогично предыдущим свойствам.

Определение 6

Когда функция имеет возможность быть интегрируемой из отрезка [ a ; b ] , тогда это выполнимо для любого внутреннего отрезка c ; d ∈ a ; b .

Доказательство 6

Доказательство основывается на свойстве Дарбу: если у имеющегося разбиения отрезка произвести добавление точек, тогда нижняя сумма Дарбу не будет уменьшаться, а верхняя не будет увеличиваться.

Определение 7

Когда функция интегрируема на [ a ; b ] из f (x) ≥ 0 f (x) ≤ 0 при любом значении x ∈ a ; b , тогда получаем, что ∫ a b f (x) d x ≥ 0 ∫ a b f (x) ≤ 0 .

Свойство может быть доказано при помощи определения интеграла Римана: любая интегральная сумма для любого выбора точек разбиения отрезка и точек ζ i с условием, что f (x) ≥ 0 f (x) ≤ 0 , получаем неотрицательной.

Доказательство 7

Если функции y = f (x) и y = g (x) интегрируемы на отрезке [ a ; b ] , тогда следующие неравенства считаются справедливыми:

∫ a b f (x) d x ≤ ∫ a b g (x) d x , е с л и f (x) ≤ g (x) ∀ x ∈ a ; b ∫ a b f (x) d x ≥ ∫ a b g (x) d x , е с л и f (x) ≥ g (x) ∀ x ∈ a ; b

Благодаря утверждению знаем, что интегрирование допустимо. Данное следствие будет использовано в доказательстве других свойств.

Определение 8

При интегрируемой функции y = f (x) из отрезка [ a ; b ] имеем справедливое неравенство вида ∫ a b f (x) d x ≤ ∫ a b f (x) d x .

Доказательство 8

Имеем, что - f (x) ≤ f (x) ≤ f (x) . Из предыдущего свойства получили, что неравенство может быть интегрировано почленно и ему соответствует неравенство вида - ∫ a b f (x) d x ≤ ∫ a b f (x) d x ≤ ∫ a b f (x) d x . Данное двойное неравенство может быть записано в другой форме: ∫ a b f (x) d x ≤ ∫ a b f (x) d x .

Определение 9

Когда функции y = f (x) и y = g (x) интегрируются из отрезка [ a ; b ] при g (x) ≥ 0 при любом x ∈ a ; b , получаем неравенство вида m · ∫ a b g (x) d x ≤ ∫ a b f (x) · g (x) d x ≤ M · ∫ a b g (x) d x , где m = m i n x ∈ a ; b f (x) и M = m a x x ∈ a ; b f (x) .

Доказательство 9

Аналогичным образом производится доказательство. M и m считаются наибольшим и наименьшим значением функции y = f (x) , определенной из отрезка [ a ; b ] , тогда m ≤ f (x) ≤ M . Необходимо умножить двойное неравенство на функцию y = g (x) , что даст значение двойного неравенства вида m · g (x) ≤ f (x) · g (x) ≤ M · g (x) . Необходимо проинтегрировать его на отрезке [ a ; b ] , тогда получим доказываемое утверждение.

Следствие: При g (x) = 1 неравенство принимает вид m · b - a ≤ ∫ a b f (x) d x ≤ M · (b - a) .

Первая формула среднего значения

Определение 10

При y = f (x) интегрируемая на отрезке [ a ; b ] с m = m i n x ∈ a ; b f (x) и M = m a x x ∈ a ; b f (x) имеется число μ ∈ m ; M , которое подходит ∫ a b f (x) d x = μ · b - a .

Следствие: Когда функция y = f (x) непрерывная из отрезка [ a ; b ] , то имеется такое число c ∈ a ; b , которое удовлетворяет равенству ∫ a b f (x) d x = f (c) · b - a .

Первая формула среднего значения в обобщенной форме

Определение 11

Когда функции y = f (x) и y = g (x) являются интегрируемыми из отрезка [ a ; b ] с m = m i n x ∈ a ; b f (x) и M = m a x x ∈ a ; b f (x) , а g (x) > 0 при любом значении x ∈ a ; b . Отсюда имеем, что есть число μ ∈ m ; M , которое удовлетворяет равенству ∫ a b f (x) · g (x) d x = μ · ∫ a b g (x) d x .

Вторая формула среднего значения

Определение 12

Когда функция y = f (x) является интегрируемой из отрезка [ a ; b ] , а y = g (x) является монотонной, тогда имеется число, которое c ∈ a ; b , где получаем справедливое равенство вида ∫ a b f (x) · g (x) d x = g (a) · ∫ a c f (x) d x + g (b) · ∫ c b f (x) d x

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Решение интегралов – задача легкая, но только для избранных. Эта статья для тех, кто хочет научиться понимать интегралы, но не знает о них ничего или почти ничего. Интеграл... Зачем он нужен? Как его вычислять? Что такое определенный и неопределенный интегралы?

Если единственное известное вам применение интеграла – доставать крючком в форме значка интеграла что-то полезное из труднодоступных мест, тогда добро пожаловать! Узнайте, как решать простейшие и другие интегралы и почему без этого никак нельзя обойтись в математике.

Изучаем понятие « интеграл»

Интегрирование было известно еще в Древнем Египте. Конечно, не в современном виде, но все же. С тех пор математики написали очень много книг по этой теме. Особенно отличились Ньютон и Лейбниц , но суть вещей не изменилась.

Как понять интегралы с нуля? Никак! Для понимания этой темы все равно понадобятся базовые знания основ математического анализа. Сведения о , необходимые и для понимания интегралов, уже есть у нас в блоге.

Неопределенный интеграл

Пусть у нас есть какая-то функция f(x) .

Неопределенным интегралом функции f(x) называется такая функция F(x) , производная которой равна функции f(x) .

Другими словами интеграл – это производная наоборот или первообразная. Кстати, о том, как читайте в нашей статье.


Первообразная существует для всех непрерывных функций. Также к первообразной часто прибавляют знак константы, так как производные функций, различающихся на константу, совпадают. Процесс нахождения интеграла называется интегрированием.

Простой пример:

Чтобы постоянно не высчитывать первообразные элементарных функций, их удобно свести в таблицу и пользоваться уже готовыми значениями.

Полная таблица интегралов для студентов


Определенный интеграл

Имея дело с понятием интеграла, мы имеем дело с бесконечно малыми величинами. Интеграл поможет вычислить площадь фигуры, массу неоднородного тела, пройденный при неравномерном движении путь и многое другое. Следует помнить, что интеграл – это сумма бесконечно большого количества бесконечно малых слагаемых.

В качестве примера представим себе график какой-нибудь функции.


Как найти площадь фигуры, ограниченной графиком функции? С помощью интеграла! Разобьем криволинейную трапецию, ограниченную осями координат и графиком функции, на бесконечно малые отрезки. Таким образом фигура окажется разделена на тонкие столбики. Сумма площадей столбиков и будет составлять площадь трапеции. Но помните, что такое вычисление даст примерный результат. Однако чем меньше и уже будут отрезки, тем точнее будет вычисление. Если мы уменьшим их до такой степени, что длина будет стремиться к нулю, то сумма площадей отрезков будет стремиться к площади фигуры. Это и есть определенный интеграл, который записывается так:


Точки а и b называются пределами интегрирования.


« Интеграл»

Кстати! Для наших читателей сейчас действует скидка 10% на

Правила вычисления интегралов для чайников

Свойства неопределенного интеграла

Как решить неопределенный интеграл? Здесь мы рассмотрим свойства неопределенного интеграла, которые пригодятся при решении примеров.

  • Производная от интеграла равна подынтегральной функции:

  • Константу можно выносить из-под знака интеграла:

  • Интеграл от суммы равен сумме интегралов. Верно также для разности:

Свойства определенного интеграла

  • Линейность:

  • Знак интеграла изменяется, если поменять местами пределы интегрирования:

  • При любых точках a , b и с :

Мы уже выяснили, что определенный интеграл – это предел суммы. Но как получить конкретное значение при решении примера? Для этого существует формула Ньютона-Лейбница:

Примеры решения интегралов

Ниже рассмотрим неопределенный интеграл и примеры с решением. Предлагаем самостоятельно разобраться в тонкостях решения, а если что-то непонятно, задавайте вопросы в комментариях.


Для закрепления материала посмотрите видео о том, как решаются интегралы на практике. Не отчаиваетесь, если интеграл не дается сразу. Обратитесь в профессиональный сервис для студентов, и любой тройной или криволинейный интеграл по замкнутой поверхности станет вам по силам.

Первообразная функция и неопределённый интеграл

Факт 1. Интегрирование - действие, обратное дифференцированию, а именно, восстановление функции по известной производной этой функции. Восстановленная таким образом функция F (x ) называется первообразной для функции f (x ).

Определение 1. Функция F (x f (x ) на некотором промежутке X , если для всех значений x из этого промежутка выполняется равенство F "(x )=f (x ), то есть данная функция f (x ) является производной от первообразной функции F (x ). .

Например, функция F (x ) = sin x является первообразной для функции f (x ) = cos x на всей числовой прямой, так как при любом значении икса (sin x )" = (cos x ) .

Определение 2. Неопределённым интегралом функции f (x ) называется совокупность всех её первообразных . При этом употребляется запись

f (x )dx

,

где знак называется знаком интеграла, функция f (x ) – подынтегральной функцией, а f (x )dx – подынтегральным выражением.

Таким образом, если F (x ) – какая-нибудь первообразная для f (x ) , то

f (x )dx = F (x ) +C

где C - произвольная постоянная (константа).

Для понимания смысла множества первообразных функции как неопределённого интеграла уместна следующая аналогия. Пусть есть дверь (традиционная деревянная дверь). Её функция - "быть дверью". А из чего сделана дверь? Из дерева. Значит, множеством первообразных подынтегральной функции "быть дверью", то есть её неопределённым интегралом, является функция "быть деревом + С", где С - константа, которая в данном контексте может обозначать, например, породу дерева. Подобно тому, как дверь сделана из дерева при помощи некоторых инструментов, производная функции "сделана" из первообразной функции при помощи формулы, которую мы узнали, изучая производную .

Тогда таблица функций распространённых предметов и соответствующих им первообразных ("быть дверью" - "быть деревом", "быть ложкой" - "быть металлом" и др.) аналогична таблице основных неопределённых интегралов, которая будет приведена чуть ниже. В таблице неопределённых интегралов перечисляются распространённые функции с указанием первообразных, из которых "сделаны" эти функции. В части задач на нахождение неопределённого интеграла даны такие подынтегральные функции, которые без особых услилий могут быть проинтегрированы непосредственно, то есть по таблице неопределённых интегралов. В задачах посложнее подынтегральную функцию нужно предварительно преобразовать так, чтобы можно было использовать табличные интегралы.

Факт 2. Восстанавливая функцию как первообразную, мы должны учитывать произвольную постоянную (константу) C , а чтобы не писать список первообразной с различными константами от 1 до бесконечности, нужно записывать множество первообразных с произвольной константой C , например, так: 5x ³+С . Итак, произвольная постоянная (константа) входит в выражение первообразной, поскольку первообразная может быть функцией, например, 5x ³+4 или 5x ³+3 и при дифференцировании 4 или 3, или любая другая константа обращаются в нуль.

Поставим задачу интегрирования: для данной функции f (x ) найти такую функцию F (x ), производная которой равна f (x ).

Пример 1. Найти множество первообразных функции

Решение. Для данной функции первообразной является функция

Функция F (x ) называется первообразной для функции f (x ), если производная F (x ) равна f (x ), или, что одно и то же, дифференциал F (x ) равен f (x ) dx , т.е.

(2)

Следовательно, функция - первообразная для функции . Однако она не является единственной первообразной для . Ими служат также функции

где С – произвольная постоянная. В этом можно убедиться дифференцированием.

Таким образом, если для функции существует одна первообразная, то для неё существует бесконечное множество первообразных, отличающихся на постоянное слагаемое. Все первообразные для функции записываются в приведённом выше виде. Это вытекает из следующей теоремы.

Теорема (формальное изложение факта 2). Если F (x ) – первообразная для функции f (x ) на некотором промежутке Х , то любая другая первообразная для f (x ) на том же промежутке может быть представлена в виде F (x ) + C , где С – произвольная постоянная.

В следующем примере уже обращаемся к таблице интегралов, которая будет дана в параграфе 3, после свойств неопределённого интеграла. Делаем это до ознакомления со всей таблицей, чтобы была понятна суть вышеизложенного. А после таблицы и свойств будем пользоваться ими при интегрировании во всей полносте.

Пример 2. Найти множества первообразных функций:

Решение. Находим множества первообразных функций, из которых "сделаны" данные функции. При упоминании формул из таблицы интегралов пока просто примите, что там есть такие формулы, а полностью саму таблицу неопределённых интегралов мы изучим чуть дальше.

1) Применяя формулу (7) из таблицы интегралов при n = 3, получим

2) Используя формулу (10) из таблицы интегралов при n = 1/3, имеем

3) Так как

то по формуле (7) при n = -1/4 найдём

Под знаком интеграла пишут не саму функцию f , а её произведение на дифференциал dx . Это делается прежде всего для того, чтобы указать, по какой переменной ищется первообразная. Например,

, ;

здесь в обоих случаях подынтегральная функция равна , но её неопределённые интегралы в рассмотренных случаях оказываются различными. В первом случае эта функция рассматривается как функция от переменной x , а во втором - как функция от z .

Процесс нахождения неопределённого интеграла функции называется интегрированием этой функции.

Геометрический смысл неопределённого интеграла

Пусть требуется найти кривую y=F(x) и мы уже знаем,что тангенс угла наклона касательной в каждой её точке есть заданная функция f(x) абсциссы этой точки.

Согласно геометрическому смыслу производной, тангенс угла наклона касательной в данной точке кривой y=F(x) равен значению производной F"(x) . Значит, нужно найти такую функцию F(x) , для которой F"(x)=f(x) . Требуемая в задаче функция F(x) является первообразной от f(x) . Условию задачи удовлетворяет не одна кривая, а семейство кривых. y=F(x) - одна из таких кривых, а всякая другая кривая может быть получена из неё параллельным переносом вдоль оси Oy .

Назовём график первообразной функции от f(x) интегральной кривой. Если F"(x)=f(x) , то график функции y=F(x) есть интегральная кривая.

Факт 3. Неопределённый интеграл геометрически представлен семеством всех интегральных кривых , как на рисунке ниже. Удалённость каждой кривой от начала координат определяется произвольной постоянной (константой) интегрирования C .

Свойства неопределённого интеграла

Факт 4. Теорема 1. Производная неопределённого интеграла равна подынтегральной функции, а его дифференциал – подынтегральному выражению.

Факт 5. Теорема 2. Неопределённый интеграл от дифференциала функции f (x ) равен функции f (x ) с точностью до постоянного слагаемого , т.е.

(3)

Теоремы 1 и 2 показывают, что дифференцирование и интегрирование являются взаимно-обратными операциями.

Факт 6. Теорема 3. Постоянный множитель в подынтегральном выражении можно выносить за знак неопределённого интеграла , т.е.


В этой статье мы перечислим основные свойства определенного интеграла. Большинство этих свойств доказываются на основе понятий определенного интеграла Римана и Дарбу .

Вычисление определенного интеграла очень часто проводится с использованием первых пяти свойств, так что мы будем при надобности на них ссылаться. Остальные свойства определенного интеграла, в основном, применяются для оценки различных выражений.


Прежде чем перейти к основным свойствам определенного интеграла , условимся, что a не превосходит b .

    Для функции y = f(x) , определенной при x = a , справедливо равенство .

    То есть, значение определенного интеграла с совпадающими пределами интегрирования равно нулю. Это свойство является следствием определения интеграла Римана, так как в этом случае каждая интегральная сумма для любого разбиения промежутка и любого выбора точек равна нулю, так как , следовательно, пределом интегральных сумм является ноль.

    Для интегрируемой на отрезке функции выполняется .

    Другими словами, при перемене верхнего и нижнего пределов интегрирования местами значение определенного интеграла меняется на противоположное. Это свойство определенного интеграла также следует из понятия интеграла Римана, только нумерацию разбиения отрезка следует начинать с точки x = b .

    для интегрируемых на отрезке функций y = f(x) и y = g(x) .

    Доказательство.

    Запишем интегральную сумму функции для данного разбиения отрезка и данного выбора точек :

    где и - интегральные суммы функций y = f(x) и y = g(x) для данного разбиения отрезка соответственно.

    Переходя к пределу при получим , что по определению интеграла Римана равносильно утверждению доказываемого свойства.

    Постоянный множитель можно выносить за знак определенного интеграла. То есть, для интегрируемой на отрезке функции y = f(x) и произвольного числа k справедливо равенство .

    Доказательство этого свойства определенного интеграла абсолютно схоже с предыдущим:

    Пусть функция y = f(x) интегрируема на интервале X , причем и , тогда .

    Это свойство справедливо как для , так и для или .

    Доказательство можно провести, опираясь на предыдущие свойства определенного интеграла.

    Если функция интегрируема на отрезке , то она интегрируема и на любом внутреннем отрезке .

    Доказательство основано на свойстве сумм Дарбу: если к имеющемуся разбиению отрезка добавить новые точки, то нижняя сумма Дарбу не уменьшится, а верхняя – не увеличиться.

    Если функция y = f(x) интегрируема на отрезке и для любого значения аргумента , то .

    Это свойство доказывается через определение интеграла Римана: любая интегральная сумма для любого выбора точек разбиения отрезка и точек при будет неотрицательной (не положительной).

    Следствие.

    Для интегрируемых на отрезке функций y = f(x) и y = g(x) справедливы неравенства:

    Это утверждение означает, что допустимо интегрирование неравенств. Этим следствием мы будем пользоваться при доказательстве следующих свойств.

    Пусть функция y = f(x) интегрируема на отрезке , тогда справедливо неравенство .

    Доказательство.

    Очевидно, что . В предыдущем свойстве мы выяснили, что неравенство можно почленно интегрировать, поэтому, справедливо . Это двойное неравенство можно записать как .

    Пусть функции y = f(x) и y = g(x) интегрируемы на отрезке и для любого значения аргумента , тогда , где и .

    Доказательство проводится аналогично. Так как m и M – наименьшее и наибольшее значение функции y = f(x) на отрезке , то . Домножение двойного неравенства на неотрицательную функцию y = g(x) приводит нас к следующему двойному неравенству . Интегрируя его на отрезке , придем к доказываемому утверждению.

    Следствие.

    Если взять g(x) = 1 , то неравенство примет вид .

    Первая формула среднего значения.

    Пусть функция y = f(x) интегрируема на отрезке , и , тогда существует такое число , что .

    Следствие.

    Если функция y = f(x) непрерывна на отрезке , то найдется такое число , что .

    Первая формула среднего значения в обобщенной форме.

    Пусть функции y = f(x) и y = g(x) интегрируемы на отрезке , и , а g(x) > 0 для любого значения аргумента . Тогда существует такое число , что .

    Вторая формула среднего значения.

    Если на отрезке функция y = f(x) интегрируема, а y = g(x) монотонна, то существует такое число , что справедливо равенство .

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png