4.4.1. Гипотеза де Бройля

Важным этапом в создании квантовой механики явилось обнаружение волновых свойств микрочастиц. Идея о волновых свойствах была первоначально высказана как гипотеза французским физиком Луи де Бройлем.

В физике в течение многих лет господствовала теория, согласно которой свет есть электромагнитная волна. Однако после работ Планка (тепловое излучение), Эйнштейна (фотоэффект) и других стало очевидным, что свет обладает корпускулярными свойствами.

Чтобы объяснить некоторые физические явления, необходимо рассматривать свет как поток частиц-фотонов. Корпускулярные свойства света не отвергают, а дополняют его волновые свойства.

Итак, фотон-элементарная частица света, обладающая волновыми свойствами.

Формула для импульса фотона

. (4.4.3)

По де Бройлю, движение частицы, например, электрона, подобно волновому процессу с длиной волны λ , определяемой формулой (4.4.3). Эти волны называют волнами де Бройля . Следовательно, частицы (электроны, нейтроны, протоны, ионы, атомы, молекулы) могут проявлять дифракционные свойства.

К.Дэвиссон и Л.Джермер впервые наблюдали дифракцию электронов на монокристалле никеля.

Может возникнуть вопрос: что происходит с отдельными частицами, как образуются максимумы и минимумы при дифракции отдельных частиц?

Опыты по дифракции пучков электронов очень малой интенсивности, то есть как бы отдельных частиц, показали, что при этом электрон не "размазывается" по разным направлениям, а ведет себя как целая частица. Однако вероятность отклонения электрона по отдельным направлениям в результате взаимодействия с объектом дифракции различная. Наиболее вероятно попадание электронов в те места, которые по расчету соответствуют максимумам дифракции, менее вероятно их попадание в места минимумов. Таким образом, волновые свойства присущи не только коллективу электронов, но и каждому электрону в отдельности.

4.4.2. Волновая функция и ее физический смысл

Так как с микрочастицей сопоставляют волновой процесс, который соответствует ее движению, то состояние частиц в квантовой механике описывается волновой функцией, зависящей от координат и времени: .

Если силовое поле, действующее на частицу, является стационарным, то есть не зависящим от времени, то ψ-функцию можно представить в виде произведения двух сомножителей, один из которых зависит от времени, а другой от координат:

Отсюда следует физический смысл волновой функции:

4.4.3. Соотношение неопределенностей

Одним из важных положений квантовой механики являются соотношения неопределенностей, предложенные В.Гейзенбергом.

Пусть одновременно измеряют положение и импульс частицы, при этом неточности в определениях абсциссы и проекции импульса на ось абсцисс равны соответственно Δx и Δр x .

В классической физике нет каких-либо ограничений, запрещающих с любой степенью точности одновременно измерить как одну, так и другую величину, то есть Δx→0 и Δр x→ 0.

В квантовой механике положение принципиально иное: Δx и Δр x , соответствующие одновременному определению x и р x , связаны зависимостью

Формулы (4.4.8), (4.4.9) называют соотношениями неопределенностей .

Поясним их одним модельным экспериментом.

При изучении явления дифракции было обращено внимание на то, что уменьшение ширины щели при дифракции приводит к увеличению ширины центрального максимума. Аналогичное явление будет и при дифракции электронов на щели в модельном опыте. Уменьшение ширины щели означает уменьшение Δ x (рис. 4.4.1), это приводит к большему "размазыванию" пучка электронов, то есть к большей неопределенности импульса и скорости частиц.


Рис. 4.4.1.Пояснение к соотношению неопределенности.

Соотношение неопределенностей можно представить в виде

, (4.4.10)

где ΔE - неопределенность энергии некоторого состояния системы; Δt -промежуток времени, в точение которого оно существует. Соотношение (4.4.10) означает, что чем меньше время существования какого-либо состояния системы, тем более неопределенно его значение энергии. Энергетические уровни Е 1 , Е 2 и т.д. имеют некоторую ширину (рис.4.4.2)), зависящую от времени пребывания системы в состоянии, соответствующем этому уровню.


Рис. 4.4.2.Энергетические уровни Е 1 , Е 2 и т.д. имеют некоторую ширину.

"Размытость" уровней приводит к неопределенности энергии ΔE излучаемого фотона и его частоты Δν при переходе системы с одного энергетического уровня на другой:

,

где m- масса частицы; ; Е и Е n -ее полная и потенциальная энергии (потенциальная энергия определяется силовым полем, в котором находится частица, и для стационарного случая не зависит от времени)

Если частица перемещается только вдоль некоторой линии, например вдоль оси ОХ (одномерный случай), то уравнение Шредингера существенно упрощается и принимает вид

(4.4.13)

Одним из наиболее простых примеров на использование уравнения Шредингера является решение задачи о движении частицы в одномерной потенциальной яме.

4.4.5. Применение уравнения Шредингера к атому водорода. Квантовые числа

Описание состояний атомов и молекул с помощью уравнения Шредингера является достаточно сложной задачей. Наиболее просто она решается для одного электрона, находящегося в поле ядра. Такие системы соответствуют атому водорода и водородоподобным ионам (однократно ионизированный атом гелия, двукратно ионизированный атом лития и т.п.). Однако и в этом случае решение задачи является сложным, поэтому ограничимся лишь качественным изложением вопроса.

Прежде всего в уравнение Шредингера (4.4.12) следует подставить потенциальную энергию, которая для двух взаимодействующих точечных зарядов - e (электрон) и Ze (ядро), - находящихся на расстоянии r в вакууме, выражается следующим образом:

Это выражение является решением уравнения Шредингера и полностью совпадает с соответствующей формулой теории Бора (4.2.30)

На рис.4.4.3 показаны уровни возможных значений полной энергии атома водорода (Е 1 , Е 2 , Е 3 и т.д.) и график зависимости потенциальной энергии Е n от расстояния r между электроном и ядром. С возрастанием главного квантового числа n увеличивается r (см.4.2.26), а полная (4.4.15) и потенциальная энергии стремятся к нулю. Кинетическая энергия также стремится к нулю. Заштрихованная область (Е>0) соответствует состоянию свободного электрона.


Рис. 4.4.3. Показаны уровни возможных значений полной энергии атома водорода
и график зависимости потенциальной энергии от расстояния r между электроном и ядром.

Второе квантовое число - орбитальное l , которое при данном n может принимать значения 0, 1, 2, …., n-1. Это число характеризует орбитальный момент импульса L i электрона относительно ядра:

Четвертое квантовое число - спиновое m s . Оно может принимать только два значения (±1/2) и характеризует возможные значения проекции спина электрона:

.(4.4.18)

Состояние электрона в атоме с заданными n и l обозначают следующим образом: 1s, 2s, 2p, 3s и т.д. Здесь цифра указывает значение главного квантового числа, а буква - орбитальное квантовое число: символам s, p, d, f, соответствуют значения l=0, 1, 2. 3 и т.д.

Уравнение учитывающее волновые и корпускулярные свойства частицы было получено Шредингером в 1926г.

Шредингер сопоставил движение частицы на комплексную функцию координат и времени, которая называетсяфункцией, эта функция является решением уравнения Шредингера:

Где Лапласа, который можно

расписать: ;; U-потенциальная энергия частицы; Где- функция координат и времени.

В квантовой физикенельзя точно предсказатькакие либо события, а можно говорить только о вероятностиданного события, вероятность событий и определяет .

1) Вероятность нахождения микрочастицы в объеме dV в момент времени Т:

Сопряженные функции.

2) Плотность вероятностей нахождения частицы в единице объема:

3) Волновая функция должна удовлетворять условию:

где 3 интеграла расчитываются по всему объему, где может находится частица.

Данное условие означает, что пробывание частицы – достоверное событие с вероятностью 1

25 Уравнение Шредингера для стационарных состояний. Условия, налагаемые на волновую функцию. Нормировка волновой функции.

Для некоторых практических задач потенциальная энергия частицы не зависит от времени. В этом случае волновую функцию можно представить как произведение

т.к. зависит только от времени, то разделим наполучим:

Левая часть равенства зависит только от времени, правая только от координат, это равенство справедливо только если обе части = const, такой константоя является полная энергия частицы Е.

Рассмотрим правую часть данного равенства: , преобразуем:- уравнение для стационарного состояния.

Рассмотрим левую часть уравнения Шредингера: ;;

разделим переменные , проинтегрируем полученное уравнение:

воспользуясь математическими преобразованиями:

В этом случае вероятность нахождения частицы можно определить:

Либо после преобразований:

–данная вероятность не зависит от времени, данное уравнение, характеризующее микрочастицы, получило название – стационарное состояние частицы.

Обычно требуют, чтобы волновая функция была определена и непрерывна (бесконечное число раз дифференцируема) во всем пространстве, а также чтобы она была однозначной. Допустимым является один вид неоднозначности волновых функций -неоднозначность знака «+/».

Волновая функция по своему смыслу должна удовлетворять так называемому условию нормировки, например, в координатном представлении имеющему вид:

Это условие выражает тот факт, что вероятность обнаружить частицу с данной волновой функцией где-либо во всём пространстве равна единице. В общем случае интегрирование должно производиться по всем переменным, от которых зависит волновая функция в данном представлении.

26 Частица в одномерной прямоугольной потенциальной яме бесконечной глубины. Квантование энергии. Принцип соответствия Бора.

Рассмотрим движение микрочастицы вдоль оси х в потенциальном поле.

Такое потенциальное поле соответствует бесконечно глубокой потенциальной яме с плоским дном. Примером движения в потенциальной яме является движение электрона в металле. Но для выхода электрона из металла необходимо совершить работу, что и соответствует потенциальной энергии в уравнении Шредингера.

При таком условии частица не проникает за пределы "ямы", т.е.

y(0)= y(l)=0 В пределах ямы (0сведется к уравнению

илиданное уравнение является диференциальным уравнением и согласно математике его решение является, гдеможно определить из граничных условий.

n-главное квантовое число n=1,2,3…

Анализ этого уравнения показывает, что в потенциальной яме энергия не может быть дискретной величиной.

состояние с min энергией называется основным, все остальные возбужденные.

Рассмотрим т.к. потенциальная яма одномерна, то можно записать, что, в местоподставим в выражение и получим. По скольку одномерная потенциальная яма с плоским дном, то

Графически изобразим

Из рисунка видно, что вероятность пребывания микрочастицы в разных местах отрезка неодинакова, с увеличением n вероятность нахождения частицы увеличивается

Квантование энергии является одним из ключевых принципов, необходимых для понимания структурной организации материи, т.е. существования стабильных, повторяющихся в своих свойствах, молекул, атомов и более мелких структурных единиц, из которых состоит как вещество, так и излучение.

Принцип квантования энергии гласит, что любая система взаимодействующих частиц, способная образовывать стабильное состояние - будь то кусок твердого тела, молекула, атом или атомное ядро, - может сделать это только при определенных значениях энергии.

В квантовой механике принципом соответствия называется утверждение о том, что поведение квантовомеханической системы стремится к классической физике в пределе больших квантовых чисел. Этот принцип ввёл Нильс Бор в 1923 году.

Правила квантовой механики очень успешно применяются в описании микроскопических объектов, типа атомов и элементарных частиц. С другой стороны, эксперименты показывают, что разнообразные макроскопические системы (пружина, конденсатор и т.д) можно достаточно точно описать в соответствии с классическими теориями, используя классическую механику и классическую электродинамику (хотя существуют макроскопические системы, демонстрирующие квантовое поведение, например, сверхтекучий жидкий гелий или сверхпроводники). Однако, весьма разумно полагать, что окончательные законы физики должны быть независимыми от размера описываемых физических объектов. Это предпосылка для принципа соответствия Бора, который утверждает, что классическая физика должна появиться как приближение к квантовой физике, поскольку системы становятся большими.

Условия, при которых квантовая и классическая механики совпадают, называются классическим пределом. Бор предложил грубый критерий для классического предела: переход происходит, когда квантовые числа, описывающие систему являются большими, означая или возбуждение системы до больших квантовых чисел, или то, что система описана большим набором квантовых чисел, или оба случая. Более современная формулировка говорит, что классическое приближение справедливо при больших значениях действия

корпускулярно -- волновым дуализмом в квантовой физике состояние частицы описывается при помощи волновой функции ($\psi (\overrightarrow{r},t)$- пси-функция).

Определение 1

Волновая функция -- это функция, которая используется в квантовой механике. Она описывает состояние системы, которая имеет размеры в пространстве. Она является вектором состояния.

Данная функция является комплексной и формально имеет волновые свойства. Движение любой частицы микромира определено вероятностными законами. Распределение вероятности выявляется при проведении большого числа наблюдений (измерений) или большого количества частиц. Полученное распределение аналогично распределению интенсивности волны. То есть в местах с максимальной интенсивностью отмечено максимальное количество частиц.

Набор аргументов волновой функции определяет ее представление. Так, возможно координатное представление: $\psi(\overrightarrow{r},t)$, импульсное представление: $\psi"(\overrightarrow{p},t)$ и т.д.

В квантовой физике целью ставится не точность предсказания события, а оценка вероятности того или иного события. Зная величину вероятности, находят средние значения физических величин. Волновая функция позволяет находить подобные вероятности.

Так вероятность присутствия микрочастицы в объеме dV в момент времени t может быть определена как:

где $\psi^*$- комплексно сопряженная функция к функции $\psi.$ Плотность вероятности (вероятность в единице объёма) равна:

Вероятность является величиной, которую можно наблюдать в эксперименте. В это же время волновая функция не доступна для наблюдения, так как она является комплексной (в классической физике параметры, которые характеризуют состояние частицы, доступны для наблюдения).

Условие нормировки $\psi$- функции

Волновая функция определена с точностью до произвольного постоянного множителя. Данный факт не оказывает влияния на состояние частицы, которую $\psi$- функция описывает. Однако волновую функцию выбирают таким образом, что она удовлетворяет условию нормировки:

где интеграл берут по всему пространству или по области, в которой волновая функция не равна нулю. Условие нормировки (2) значит то, что во всей области, где $\psi\ne 0$ частица достоверно присутствует. Волновую функцию, которая подчинятся условию нормировки, называют нормированной. Если ${\left|\psi\right|}^2=0$, то данное условие означает, что частицы в исследуемой области наверняка нет.

Нормировка вида (2) возможна при дискретном спектре собственных значений.

Условие нормировки может оказаться не осуществимым. Так, если $\psi$ -- функция является плоской волной де-Бройля и вероятность нахождения частицы является одинаковой для всех точек пространства. Данные случаи рассматривают как идеальную модель, в которой частица присутствует в большой, но имеющей ограничения области пространства.

Принцип суперпозиции волновой функции

Данный принцип является одним их основных постулатов квантовой теории. Его смысл в следующем: если для некоторой системы возможны состояния, описываемые волновыми функциями $\psi_1\ {\rm и}\ $ $\psi_2$, то для этой системы существует состояние:

где $C_{1\ }и\ C_2$ -- постоянные коэффициенты. Принцип суперпозиции подтверждается эмпирически.

Можно говорить о сложении любого количества квантовых состояний:

где ${\left|C_n\right|}^2$ -- вероятность того, что система обнаруживается в состоянии, которое описывается волновой функцией $\psi_n.$ Для волновых функций, подчиненных условию нормировки (2) выполняется условие:

Стационарные состояния

В квантовой теории особую роль имеют стационарные состояния (состояния в которых все наблюдаемые физические параметры не изменяются во времени). (Сама волновая функция принципиально не наблюдаема). В стационарном состоянии $\psi$- функция имеет вид:

где $\omega =\frac{E}{\hbar }$, $\psi\left(\overrightarrow{r}\right)$ не зависит от времени, $E$- энергия частицы. При виде (3) волновой функции плотность вероятности ($P$) является постоянной времени:

Из физических свойств стационарных состояний следуют математические требования к волновой функции $\psi\left(\overrightarrow{r}\right)\to \ (\psi(x,y,z))$.

Математические требования к волновой функции для стационарных состояний

$\psi\left(\overrightarrow{r}\right)$- функция должна быть во всех точках:

  • непрерывна,
  • однозначна,
  • конечна.

Если потенциальная энергия имеет поверхность разрыва, то на подобных поверхностях функция $\psi\left(\overrightarrow{r}\right)$ и ее первая производная должны оставаться непрерывными. В области пространства, где потенциальная энергия становится бесконечной, $\psi\left(\overrightarrow{r}\right)$ должна быть равна нулю. Непрерывность функции $\psi\left(\overrightarrow{r}\right)$ требует, чтобы на любой границе этой области $\psi\left(\overrightarrow{r}\right)=0$. Условие непрерывности накладывается на частные производные от волновой функции ($\frac{\partial \psi}{\partial x},\ \frac{\partial \psi}{\partial y},\frac{\partial \psi}{\partial z}$).

Пример 1

Задание: Для некоторой частицы задана волновая функция вида: $\psi=\frac{A}{r}e^{-{r}/{a}}$, где $r$ -- расстояние от частицы до центра силы (рис.1), $a=const$. Примените условие нормировки, найдите нормировочный коэффициент A.

Рисунок 1.

Решение:

Запишем условие нормировки для нашего случая в виде:

\[\int{{\left|\psi\right|}^2dV=\int{\psi\psi^*dV=1\left(1.1\right),}}\]

где $dV=4\pi r^2dr$ (см.рис.1 Из условий понятно, что задача обладает сферической симметрией). Из условий задачи имеем:

\[\psi=\frac{A}{r}e^{-{r}/{a}}\to \psi^*=\frac{A}{r}e^{-{r}/{a}}\left(1.2\right).\]

Подставим $dV$ и волновые функции (1.2) в условие нормировки:

\[\int\limits^{\infty }_0{\frac{A^2}{r^2}e^{-{2r}/{a}}4\pi r^2dr=1\left(1.3\right).}\]

Проведем интегрирование в левой части:

\[\int\limits^{\infty }_0{\frac{A^2}{r^2}e^{-{2r}/{a}}4\pi r^2dr=2\pi A^2a=1\left(1.4\right).}\]

Из формулы (1.4) выразим искомый коэффициент:

Ответ: $A=\sqrt{\frac{1}{2\pi a}}.$

Пример 2

Задание: Каково наиболее вероятное расстояние ($r_B$) электрона от ядра, если волновая функция, которая описывает основное состояние электрона в атоме водорода может быть определена как: $\psi=Ae^{-{r}/{a}}$, где $r$- расстояние от электрона до ядра, $a$ -- первый Боровский радиус?

Решение:

Используем формулу, которая определяет вероятность присутствия микрочастицы в объеме $dV$ в момент времени $t$:

где $dV=4\pi r^2dr.\ $Следователно, имеем:

В таком случае, $p=\frac{dP}{dr}$ запишем как:

Для определения наиболее вероятного расстояния производную $\frac{dp}{dr}$ приравняетм к нулю:

\[{\left.\frac{dp}{dr}\right|}_{r=r_B}=8\pi rA^2e^{-{2r}/{a}}+4\pi r^2A^2e^{-{2r}/{a}}\left(-\frac{2}{a}\right)=8\pi rA^2e^{-{2r}/{a}}\left(1-\frac{r}{a}\right)=0(2.4)\]

Так как решение $8\pi rA^2e^{-{2r_B}/{a}}=0\ \ {\rm при}\ \ r_B\to \infty $, нам не подходит, то отсается:

Экспериментальное подтверждение идеи де Бройля об универсальности корпускулярно-волнового дуализма, ограниченность применения классической механики к микробъектам, диктуемая соотношением неопределенностей, а также противоречие целого ряда экспериментов с применяемыми в начале XX в. теориями привели к новому этапу развития квантовой теории - созданию квантовой механики, описывающей законы движения и взаимодействия микрочастиц с учетом их волновых свойств.

В квантовой механике состояние микрочастиц описывается с помощью волновой функции , которая является основным носителем информации об их корпускулярных и волновых свойствах . Вероятность нахождения частицы в элементе объемом dV равна

dW = │Ψ│ 2 dV . (33.6)

Величина │Ψ│ 2 = dW/dV - имеет смысл плотности вероятности, т.е. определяет вероятность нахождения частицы в единичном объеме в окрестности точки с координатами х , у , z . Таким образом, физический смысл имеет не сама Ψ- функция, а квадрат ее модуля |Ψ| 2 , которым задается интенсивность волн де Бройля.

Вероятность найти частицу в момент времени t в конечном объеме V , равна

W= = │ Ψ 2 dV . (33.7)

Так как Ψ 2 dV определяется как вероятность, то необходимо волновую функцию Ψ нормировать так, чтобы вероятность достоверного события обращалась в единицу, если за объем V принять бесконечный объем всего пространства. Это означает, что при данном условии частица должна находиться где-то в пространстве. Следовательно, условие нормировки вероятностей

Ψ 2 dV =1, (33.8)

где данный интеграл (8) вычисляется по всему бесконечному пространству, т. е. по координатам х , у , z от - ∞ до ∞. Функция Ψ должна быть конечной, однозначной, и непрерывной.

Уравнение Шредингера

Уравнением движения в квантовой механике, описывающим движение микрочастиц в различных силовых полях, должно быть уравнение, из которого вытекали бы волновые свойства частиц. Оно должно быть уравнением относительно волновой функции Ψ(х , у , z , t ), так как величина Ψ 2 определяет вероятность пребывания частицы в момент времени в объеме.



Основное уравнение сформулированоЭ. Шредингером: уравнения не выводится, а постулируется.

Уравнение Шредингера имеет вид:

- ΔΨ + U (x ,y , z , t = iħ , (33.9)

где ħ=h/ (2π ), т -масса частицы, Δ-оператор Лапласа, i - мнимая единица,U (x ,y ,z ,t ) - потенциальная функция частицы в силовом поле, в котором она движется, Ψ(x ,y , z , t ) - искомая волновая функция частицы.

Уравнение (32.9) является общим уравнением Шредингера . Его также называют уравнением Шредингера, зависящим от времени. Для многих физических явлений, происходящих в микромире, уравнение (33.9) можно упростить, исключив зависимость Ψ от времени, иными словами, найти уравнение Шредингера для стационарных состояний - состояний с фиксированными значениями энергии. Это возможно, если силовое поле, в котором частица движется, стационарно, т. е. функцияU (x ,y ,z ,t ) не зависит явно от времени и имеет смысл потенциальной энергии.

Ψ + (E -U )Ψ = 0. (33.10)

Уравнение (33.10) называется уравнением Шредингера для стационарных состояний .

В это уравнение в качестве параметра входит полная энергия Е частицы. Решение уравнения имеет место не при любых значениях параметра Е , а лишь при определенном наборе, характерном для данной задачи. Эти значения энергии называются собственными. Собственные значения Е могут образовывать как непрерывный и дискретный ряд.

> Волновая функция

Читайте о волновой функции и теории вероятностей квантовой механики: суть уравнения Шредингера, состояние квантовой частицы, гармонический осциллятор, схема.

Речь идет об амплитуде вероятности в квантовой механике, описывающей квантовое состояние частицы и ее поведение.

Задача обучения

  • Объединить волновую функцию и плотность вероятности определения частички.

Основные пункты

  • |ψ| 2 (x) соответствует плотности вероятности определения частички в конкретном месте и моменте.
  • Законы квантовой механики характеризуют эволюцию волновой функции. Уравнение Шредингера объясняет ее наименование.
  • Волновая функция должна удовлетворять множество математических ограничений для вычислений и физической интерпретации.

Термины

  • Уравнение Шредингера – частичный дифференциал, характеризующий изменение состояния физической системы. Его сформулировал в 1925 году Эрвин Шредингер.
  • Гармонический осциллятор – система, которая при смещении от изначальной позиции, испытывает влияние силы F, пропорциональной смещению х.

В пределах квантовой механики волновая функция отображает амплитуду вероятности, характеризующую квантовое состояние частички и ее поведение. Обычно значение – комплексное число. Наиболее распространенными символами волновой функции выступают ψ (x) или Ψ(x). Хотя ψ – комплексное число, |ψ| 2 – вещественное и соответствует плотности вероятности нахождения частицы в конкретном месте и времени.

Здесь отображены траектории гармонического осциллятора в классической (А-В) и квантовой (C- H) механиках. В квантовой шар обладает волновой функцией, отображенной с реальной частью в синем и мнимой в красном. Траектории C- F – примеры стоячих волн. Каждая такая частота будет пропорциональной возможному уровню энергии осциллятора

Законы квантовой механики эволюционируют со временем. Волновая функция напоминает другие, вроде волн в воде или струне. Дело в том, что формула Шредингера выступает типом волнового уравнения в математике. Это приводит к двойственности волновых частиц.

Волновая функция обязана соответствовать ограничениям:

  • всегда конечная.
  • всегда непрерывная и непрерывно дифференцируемая.
  • удовлетворяет соответствующее условие нормировки, чтобы частичка существовала со 100% определенностью.

Если требования не удовлетворены, то волновую функцию нельзя интерпретировать в качестве амплитуды вероятности. Если мы проигнорируем эти позиции и воспользуемся волновой функцией, чтобы определить наблюдения квантовой системы, то не получим конечных и определенных значений.

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png