Цель: ознакомление с оптической схемой и работой интерферометра; определение длины волны света, измерение малых деформаций.

Введение

При сложении двух когерентных световых волн интенсивность света в некоторой произвольной точке М будет зависеть от разности фаз колебаний, пришедших в эту точку.

Пусть в точке О происходит разделение волны на две когерентные волны, которые накладываются друг на друга в точке М . Разность фаз в этой точке когерентных волн зависит от времени распространения волн из точки О в точку М . Для первой волны это время равно , для второй
, где,- путь и скорость распространения первой волны из точкиО в точку М ; ,- для второй волны. Как известно,

,
, (1)

где с - скорость света в вакууме; n 1 и n 2 - показатели преломления первой и второй среды соответственно.

Тогда разность фаз двух волн в точке М можно представить в виде

, (2)

где  - оптическая разность хода двух волн;
и
- оптические длины первой и второй волн.

Из формулы (2) видно, что если разность хода равна целому числу длин волн в вакууме

,k = 0, 1, 2, (3)

то разность фаз оказывается кратной 2и колебания, возбуждаемые в точкеМ обеими волнами, будут происходить с одинаковой фазой. Таким образом (3) есть условие интерференционного максимума.

Оптические измерительные приборы, основанные на интерференции света, называются интерферометрами . В настоящей работе используется интерферометр Майкельсона, принципиальная схема которого показана на рис.1.

Его основными элементами являются: источник света И, делительный кубик К и два зеркала - подвижное З1 и неподвижное З2. Пучек света от источника И падает на кубик К, склеенный из двух половинок по большой диагональной плоскости. Последняя играет роль полупрозрачного слоя, разделяющего исходный пучок на два - 1 и 2. После отражения от зеркала и совмещения лучи 1 и 2 попадают на экран Э, где наблюдается интерференционная картина. Вид интерференционной картины определяется конфигурацией волновых поверхностей интерферирующих волн. Если волновые поверхности плоские (от источника идет коллимированный пучок), то на экране появится система параллельных чередующихся светлых и темных полос (см. § 2 разд.2), причем расстояние между темными и светлыми полосами определяется соотношением

, (4)

где - длина волны света;- угол между волновыми векторамииинтерферирующих волн.

Величину угла и, следовательно, ширину полос, удобную для наблюдения, можно устанавливать путем изменения наклона зеркал З1 и З2 и кубика К.

В том случае, когда складываемые волны - сферические (см. § 6 разд.2), интерференционная картина имеет вид колец с расстояниями между полосами тем большими, чем меньше отличаются радиусы кривизны волновых поверхностей.

Расстояния от делительного кубика до зеркал принято называть плечами интерферометра , которые в общем случае не равны друг другу. Удвоенная разность длин плеч - это оптическая разность хода интерферирующих волн . Изменение длины любого плеча на величинуприводит к изменению оптической разности хода наи, соответственно, к смещению интерференционной картины на экране на одну полосу. Таким образом, интерферометр может служить чувствительным прибором для измерения очень малых перемещений.

Изменить оптическую разность хода двух лучей можно различными способами. Можно перемещать одно из зеркал, при этом оптическая разность хода изменится на удвоенную величину перемещения зеркала. Можно изменить оптическую длину пути одного из лучей, изменив на некотором участке показатель преломления среды, при этом изменение разности хода интерферирующих лучей будет равно удвоенному значению оптической длины пути света в этой среде. В работе использованы методы, позволяющие измерять разные физические величины.

Стеклянная пластинка. Пусть на пути одного из лучей стоит стеклянная пластинка толщиной d с показателем преломления n . При повороте пластинки на угол от положения, перпендикулярного падающему пучку света, возникает дополнительная разность хода:

. (5)

Если при повороте происходит смещение интерференционной картины на m полос, то
и можно найти показатель преломления. Для небольших углов
приближенно из (5)

В интерферометре Майкельсона используется явление интерференции в тонких пленках. Явление интерференции в данном приборе осуществляется способом деления амплитуды волны.

Что собой представляет это устройство? На массивном постаменте находится плоскопараллельная слегка покрытая серебром пластинка ($A$), расположенная под углом $45^0$ к направлению распространения лучей и два взаимно перпендикулярных плоских зеркала $C$ и $D$ (рис.1).

Рисунок 1.

Пластина B (рис.1) служит как вспомогательная, она компенсирует разность хода лучей. Световые волны распространяются от ($S$). Часть из них отражается от серебряной поверхности пластины $A$, часть проходит сквозь данную пластинку. Так происходит процесс расщепления волны света на две когерентные волны. Волны, которые проходят через пластинку отражаются от зеркал $C$ и $D$. Отраженные волны снова частично отражаются, частично проходят сквозь посеребрённую пластинку $A$. Эти волны могут интерферировать на участке $АК$. Эта интерференционная картина наблюдается в зрительную трубу. Так, на пластинке $А$ происходит деление амплитуды, фронт волн на ней сохраняется изменяется только направление его движения.

Если гипотетически плечо $DA$ развернуть на $90^0$, то зеркало $D$ попадет в положение $D"$. Между $D"$ и $С$ появляется промежуток, который может быть подобен тонкой пленке. В том случае, если зеркала $C$ и $D$ строго перпендикулярны, то наблюдаются полосы равного наклона, которые представляют собой круги. Зрительная труба в таком случае должна быть настроена на бесконечность. Если зеркала $C$ и $D$ не совсем перпендикулярные, то промежуток между нами уподобляется клину, то появляются полосы равной толщины в виде прямых полос. Зрительную трубу в этом случае фокусируют на посеребренную грань пластинки $А$.

Интерференция монохроматических волн, которые распространяются по оси интерферометра

В случае распространения волн строго по оси интерферометра оптическая разность хода лучей ($\triangle $) появляется за счет разницы в длинах плечей ($l_1\ и\ l_2\ \ $) интерферометра:

Появляющаяся при этом разность фаз равна:

При строгом расчете следует учесть изменение фаз волн при отражении от зеркал и преломления в пластинке $A$, здесь мы этого делать не будем, так как принципиального значения для картины интерференции это в нашем случае не имеет.

где $E_0$ -- амплитуда волны до попадания на пластинку $А$. $\delta ={\varphi }_2-{\varphi }_1$. Следовательно, для наблюдаемой в результате интенсивности получим:

где $I_0=\frac{1}{2}{E_0}^2$ -- интенсивность входящей от источника света волны.

В том случае, если:

интенсивность (3) равна нулю. Если:

интенсивность равна $I_0$, что означает: вся энергия от источника попадает на «экран», потока энергии, которая возвращается в направлении источника света, нет.

Замечание

Интерферометр Майкельсона применяют для измерения маленьких расстояний, малых изменений показателей преломления. Сам Майкельсон применял свой интерферометр для опыта, по проверке связи скорости света с направлением движения луча по отношению к Земле.

Пример 1

Задание: Для того чтобы вычислить показатель преломления аммиака в одно плечо интерферометра Майкельсона помещается стеклянная трубка внутри которой находится вакуум. Ее длина $l=15\ см=15\cdot 10^{-2}м$. В случае заполнения данной трубки аммиаком интерференционная картина для длины волны равной $\lambda =589\ нм=589\cdot {10}^{-9}м$ смещается на $192$ полосы. Чему равен показатель преломления аммиака?

Решение:

Разность оптического хода волны ($\triangle $) в вакууме и аммиаке можно найти как:

\[\triangle =ln-ln_v\left(1.1\right),\]

где $n_v$=1 показатель преломления для вакуума. Запишем условие интерференционных минимумов:

\[\triangle =m\frac{\lambda }{2}\ \left(m=0,\pm 1,\pm 2,\dots \right)\left(1.2\right).\]

Приравняем правые части выражений (1.1) и (1.2), получим:

Выразим из (1.3) показатель преломления:

Проведем вычисления:

Ответ: $n=1,000377.$

Пример 2

Задание: В интерферометре Майкельсона при поступательном движении одного из зеркал интерференционная картина то исчезает, то появляется. Каково перемещение ($\triangle l$) зеркала между двумя последовательными появлениями четкой интерференционной картины, если использовать волны ${\lambda }_1$ и ${\lambda }_2$?

Решение:

Причиной исчезновения интерференционной картины можно считать то, что максимумы и минимумы интерференционной картины волн разной длины сдвинуты относительно друг друга. При достаточной разнице в длине волны максимумы в интерференции одной волны могут попадать на минимумы другой, тогда интерференционная картина полностью исчезает.

Запишем условие перехода от одной четкой картины к другой:

\[\left(z+1\right){\lambda }_1=z{\lambda }_2\left(2.1\right),\]

где $z$ -- целое число. Искомое перемещение зеркала ($\triangle l$) можно определить как:

Используя систему уравнений (2.1) и (2.2) выразим $\triangle l$:

\[\left(z{\lambda }_1+{\lambda }_1\right)=z{\lambda }_2\to z{(\lambda }_2-{\lambda }_1)={\lambda }_1\to z=\frac{{\lambda }_1}{{(\lambda }_2-{\lambda }_1)},\] \[\triangle l=\frac{{\lambda }_1{\lambda }_2}{2{(\lambda }_2-{\lambda }_1)}.\]

Ответ: $\triangle l=\frac{{\lambda }_1{\lambda }_2}{2{(\lambda }_2-{\lambda }_1)}.$

Интерфер ометр - измерительный прибор, в котором используется интерференция волн. Существуют интерферометры для звуковых и для электромагнитных волн: оптических (ультрафиолетовой, видимой и инфракрасной областей спектра) и радиоволн различной длины. Применяются интерферометры весьма широко. Наибольшее распространение получили оптические интерферометры , о которых пойдёт речь ниже. Они применяются для измерения длин волн спектральных линий, показателей преломления прозрачных сред, абсолютных и относительных длин, угловых размеров звёзд, для контроля качества оптических деталей и их поверхностей, для контроля чистоты обработки металлических поверхностей и пр.

Принцип действия всех интерферометров одинаков, и различаются они лишь методами получения когерентных волн и тем, какая величина непосредственно измеряется. Пучок света с помощью того или иного устройства пространственно разделяется на два или большее число когерентных пучков, которые проходят различные оптические пути, а затем сводятся вместе. В месте схождения пучков наблюдается интерференционная картина, вид которой, т. е. форма и взаимное расположение интерференционных максимумов и минимумов, зависит от способа разделения пучка света на когерентные пучки, от числа интерферирующих пучков, разности их оптических путей (оптической разности хода), относительной интенсивности, размеров источника, спектрального состава света.

Методы получения когерентных пучков в интерферометрах очень разнообразны, поэтому существует большое число их различных конструкций. По числу интерферирующих пучков света оптические интерферометры можно разбить на многолучевые и двухлучевые .

Примером двухлучевого интерферометры может служить интерферометр Майкельсона (Рисунок 3). Параллельный пучок света источника L , попадая на полупрозрачную пластинку P 1 , разделяется на пучки 1 и 2. После отражения от зеркал M 1 иM 2 и повторного прохождения через пластинку P 1 оба пучка попадают в объектив O 2 , в фокальной плоскости D которого они интерферируют. Оптическая разность хода D = 2(AC - AB ) = 2l , где l - расстояние между зеркалом M 2 и мнимым изображением M 1 ¢ зеркала M 1 в пластинке P 1 . Таким образом, наблюдаемая интерференционная картина эквивалентна интерференции в воздушной пластинке толщиной l . Если зеркало M 1 расположено так, что M 1 ¢ и M 2 параллельны, то образуются полосы равного наклона, локализованные в фокальной плоскости объектива O 2 и имеющие форму концентрических колец. Если же M 2 и M 1 ¢ образуют воздушный клин, то возникают полосы равной толщины, локализованные в плоскости клина M 2 M 1 ¢ и представляющие собой параллельные линии.

Интерферометр Майкельсона широко используется в физических измерениях и технических приборах. С его помощью впервые была измерена абсолютная величина длины волны света, доказана независимость скорости света от движения Земли.

Существуют двухлучевые интерферометры, предназначенные для измерения показателей преломления газов и жидкостей, - интерференционные рефрактометры. Один из них - И. Жамена (Рисунок 4 ). Пучок света S после отражения от передней и задней поверхностей первой пластины P 1 разделяется на два пучка S 1 иS 2 . Пройдя через кюветы K 1 и K 2 , пучки, отразившиеся от поверхностей пластины P 2 , попадают в зрительную трубу Т , где интерферируют, образуя полосы равного наклона. Если одна из кювет наполнена веществом с показателем преломления n 1 , а другая с n 2 , то по смещению интерференционной картины на число полос m по сравнению со случаем, когда обе кюветы наполнены одним и тем же веществом, можно найти Dn = n 1 - n 2 = =m l/l (l - длина кюветы).

В интерферометре Рэлея (Рисунок 6) интерферирующие пучки выделяются с помощью двух щелевых диафрагм D . Пройдя кюветы K 1 и K 2 , эти пучки собираются в фокальной плоскости объективом O 2 , где образуется интерференционная картина полос равного наклона, которая рассматривается через окуляр O 3 . При этом часть пучков, выходящих из диафрагм, проходит ниже кювет и образует свою интерференционную картину, расположенную ниже первой. Если показатели преломления n 1 и n 2 веществ в кюветах, то из-за разности хода в кюветах верхняя картина сместится относительно нижней. Измеряя величину смещения по числу полос m , можно найти Dn .

Точность измерения показателей преломления с помощью интерференционных рефрактометров очень высока и достигает 7-го и даже 8-го десятичного знака.

Многолучевой интерферометр Фабри - Перо (Рисунок 7 ) состоит из двух стеклянных или кварцевых пластинок P 1 и P 2 , на обращённые друг к другу и параллельные между собой поверхности которых нанесены зеркальные покрытия с высоким (85-98%) коэффициентом отражения. Параллельный пучок света, падающий из объектива O 1 , в результате многократных отражений от зеркал образует большое число параллельных, когерентных пучков с постоянной разностью хода между соседними пучками. В результате многолучевой интерференции в фокальной плоскости L объектива O 2 образуется интерференционная картина, имеющая форму концентрических колец с резкими интенсивными максимумами, положение которых зависит от длины волны. Поэтому И. Фабри - Перо разлагает сложное излучение в спектр.


Рисунок 7 - Интерферометр Фабри - Перо

Применяется И. Фабри - Перо как интерференционный спектральный прибор высокой разрешающей силы. Специальные сканирующие И. Фабри - Перо с фотоэлектрической регистрацией используются для исследования спектров в видимой, инфракрасной и сантиметровой областях длин волн. Разновидностью И. Фабри - Перо являются оптические резонаторы лазеров, излучающая среда которых располагается между зеркалами И.

К многолучевым интерферометрам также относятся различного рода дифракционные решётки, которые используются как интерференционные спектральные приборы.


Заключение

Интерференция – одно из ярких проявлений волновой природы света. Это интересное и красивое явление наблюдается при наложении двух или нескольких световых пучков.

Интерферометры - очень чувствительные оптические приборы, позволяющие определять незначительные изменения показателя преломления прозрачных тел (газов, жидких и твердых тел) в зависимости от давления, температуры, примесей и т. д.

Применение интерферометров очень многообразно. Кроме перечисленного, они применяются для изучения качества изготовления оптических деталей, измерения углов, исследования быстропротекающих процессов, происходящих в воздухе, обтекающем летательные аппараты, и т. д. Применяя интерферометр, Майкельсон впер вые провел сравнение международного эталона метра с длиной стандартной световой волны. С помощью интерферометров исследовалось также распространение света в движущихся телах, что привело к фундаментальным изменениям представлений о пространстве и времени.


Похожая информация.


Имеется много разновидностей интерференционных приборов, называемых интерферометрами. На рис. 123.1 изображена схема интерферометра Майкельсона. Пучок света от источника 5 падает на полупрозрачную пластинку покрытую тонким слоем серебра (этот слой показан на рисунке точками). Половина упавшего светового потока отражается пластинкой в направлении луча 1, половина проходит сквозь пластинку и распространяется в направлении луча 2. Пучок 1 отражается от зеркала и возвращается к где он делится на два равных по интенсивности пучка. Один из них проходит сквозь пластинку и образует пучок 1, второй отражается в направлении к S; этот пучок нас интересовать больше не будет. Пучок 2, отразившись от зеркала тоже возвращается к пластинке где он делится на две части: отразившийся От полупрозрачного слоя пучок 2 и прошедший сквозь слой пучок, которым мы также интересоваться больше не будем. Пучки света 1 и 2 имеют одинаковую интенсивность.

При соблюдении условий временной и пространственной когерентности пучки 1 и 2 будут интерферировать. Результат интерференции зависит от оптической разности хода от пластинки до зеркал и обратно. Луч 2 проходит толщу пластинки трижды, луч 1 - только один раз. Чтобы скомпенсировать возникающую за счет этого разную (вследствие дисперсии) для различных длин волн оптическую разность хода, на пути луча 1 ставится точно такая, как но не посеребренная пластинка Тем самым уравниваются пути лучей и 2 в стекле. Интерференционная картина наблюдается с помощью зрительной трубы Т.

Заменим мысленно зеркало его мнимым изображением в полупрозрачной пластинке Тогда лучи 1 и 2 можно рассматривать как возникшие за счет отражения от прозрачной пластинки, ограниченной плоскостями . С помощью котировочных винтов можно изменять угол между этими плоскостями, в частности их можно устанавливать строго параллельно друг другу. Вращая микрометрический винт можно плавно перемещать зеркало не изменяя его наклона.

Тем самым можно изменять толщину «пластинки», в частности можно заставить плоскости пересечься друг с другом (рис. 123.1,6).

Характер интерференционной картины зависит от юстировки зеркал и от расходимости пучка света, падающего на прибор. Если пучок параллелен, а плоскости образуют угол, не равный нулю, то в поле зрения трубы наблюдаются прямолинейные полосы равной толщины, расположенные параллельно линии пересечения плоскостей . В белом свете все полосы, кроме совпадающей с линией пересечения полосы нулевого порядка, будут окрашенными. Нулевая полоса оказывается черной, так как луч отражается от пластинки снаружи, а луч 2 - изнутри, вследствие чего между ними возникает разность фаз, равная белом свете полосы наблюдаются лишь при малой толщине «пластинки» (см. (122.5)). В монохроматическом свете, соответствующем красной линии кадмия, Майкельсон наблюдал отчетливую интерференционную картину при разности хода порядка 500 000 длин волн (расстояние между составляет в этом случае приблизительно 150 мм).

При слегка расходящемся пучке света и строго параллельном расположении плоскостей и МЬ. получаются полосы равного наклона, имеющие вид концентрических колец. При вращении микрометрического винта кольца увеличиваются или уменьшаются в диаметре. При этом в центре картины либо возникают новые кольца, либо уменьшающиеся кольца стягиваются в точку и затем исчезают. Смещение картины на одну полосу соответствует перемещению зеркала на половицу длины волны.

С помощью описанного выше прибора Майкельсон осуществил несколько вошедших в историю физики экспериментов. Самый знаменитый из них, выполненный совместно с Морли в 1887 г., преследовал цель обнаружить движение Земли относительно гипотетического эфира (об этом опыте мы расскажем в § 150). В 1890-1895 гг. с помощью изобретенного им интерферометра Майкельсон произвел первое сравнение длины волны красной линии кадмия с длиной нормального метра.

В 1920 г. Майкельсон построил звездный интерферометр, с помощью которого он измерил угловые размеры некоторых звезд. Этот прибор монтировался на телескопе. Перед объективом телескопа устанавливался экран с двумя щелями (рис. 123.2).

Свет от звезды отражался от симметричной системы зеркал установленных на жесткой раме, укрепленной на тележке. Внутренние зеркала были неподвижны, а внешние могли симметрично смещаться, удаляясь от зеркал либо приближаясь к ним. Ход лучей ясен из рисунка. В фокальной плоскости объектива телескопа возникали интерференционные полосы, видность 1 которых зависела от расстояния между внешними зеркалами. Перемещая эти зеркала, Майкельсон определял расстояние между ними при котором видность полос обращалась в нуль. Это расстояние должно быть порядка радиуса когерентности световой волны, пришедшей от звезды. Согласно (120.14) радиус когерентности равен Из условия получается угловой диаметр звезды

> Интерферометр Майкельсона

Рассмотрите принцип действия интерферометра Майкельсона . Узнайте, как выглядит интерференционная картина в интерферометре Майкельсона, схема и применение.

Интерферометр Майкельсона - наиболее распространенная конфигурация в сфере оптической интерферометрии.

Задача обучения

  • Разобраться в принципе функционирования интерферометра Майкельсона.

Основные пункты

  • В интерферометрии используют наложенные волны, чтобы добыть о них информацию.
  • Конкретный привод разбивает луч света на два пути, отскакивая назад и рекомбинируя их для формирования интерференционной картинки.
  • Наиболее известное применение – эксперимент Майкельсона-Морли, где нулевой результат стал вдохновением на специальную теорию относительности.

Термины

  • Специальная теория относительности: скорость света остается стабильной во всех системах отсчета.
  • Наложенный – располагается над чем-то другим.
  • Интерференция – созданный суперпозицией эффект, из-за искажения под действием атмосферного или иного влияния.

Интерферометрия

Если говорить просто, то интерферометрия – использование помех в наложенных волнах, чтобы измерить их характеристики. Метод интерферометрии применяется во многих научных областях, например, астрономии, инженерии, физике, волоконной оптике и океанографии.

В промышленном плане с ее помощью измеряют небольшие помещения, показатель преломления и неровности на поверхностях. При объединении двух волн с единой частотой, результирующий узор основывается на отличие их фаз. Конструктивные помехи формируются, если волны соответствуют по фазе, а деструктивные – не сходятся. Этот принцип используют в интерферометрии, чтобы получить сведения об исходном состоянии волн.

Интерферометр Майкельсона

Интерферометр Майкельсона – самый распространенный в использовании интерферометр, созданный А. А. Майкельсоном. Принцип действия заключается в разделении светового луча на два пути. После этого он рекомбинирует их и формирует интерференционную картинку. Чтобы создать полосы на детекторе, пути должны обладать разной длиной и составом.

Цветные и монохроматические полосы: (а) – белые полосы, где два пучка отличаются по числу фазовых инверсий; (b) – белые полосы, где два пучка характеризуются единым числом фазовых инверсий; (с) – шаблон полос с монохроматическим светом

На нижнем рисунке видно, как работает прибор. M 1 и M 2 – два сильно полированных зеркала, S – световой источник, M – зеркало с половиной серебра, функционирующее как разделитель лучей, а C – точка на M, частично отражающая. Когда луч S попадает в точку на M, то разделяется на два пучка. Один луч отражается в сторону A, а второй передается через поверхность M в точку B. A и B – точки на сильно полированных зеркалах M 1 и M 2 . Когда лучи попадают в эти точки, то отражаются обратно в точку C, где рекомбинируют для создания интерференционной картины. В точке E она попадает в обзор наблюдателю.

Диаграмма интерферометра Майкельсона демонстрирует маршрут прохождения световых волн

Применения

Интерферометр Майкельсона применяют для поиска гравитационных волн. Он также сыграл главную роль в исследовании верхнего атмосферного слоя, определении температур и ветров через измерение допплеровской ширины и сдвигов в спектрах свечения и сияния.

Но все же многим запомнилось наиболее известное применение – эксперимент Майкельсона-Морли. Это была неудачная попытка демонстрации влияния гипотетического эфирного ветра на скорость обычного ветра. Это вдохновило на создание специальной теории относительности.

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png