Пусть окружность имеет радиус , а ее центр находится в точке
. Точка
лежит на окружности тогда и только тогда, когда модуль вектора
равен, то есть. Последнее равенство выполнено тогда и только тогда, когда

Уравнение (1) и является искомым уравнением окружности.

Уравнение прямой, проходящей через данную точку, перпендикулярно данному вектору


перпендикулярно вектору
.

Точка

и
перпендикулярны. Векторы
и
перпендикулярны тогда и только тогда, когда их скалярное произведение равно нулю, то есть
. Используя формулу вычисления скалярного произведения векторов, заданных своими координатами, уравнение искомой прямой записываем в виде

Рассмотрим пример. Найти уравнение прямой, проходящей через

середину отрезка АВ перпендикулярно этому отрезку если координаты точек соответственно равны А(1;6), В(5;4).

Будем рассуждать следующим образом. Чтобы найти уравнение прямой мы должны знать точку, через которую эта прямая проходит, и вектор перпендикулярный этой прямой. Вектором, перпендикулярным данной прямой, будет вектор , поскольку, по условию задачи, прямая перпендикулярна отрезку АВ. Точку
определим из условия, что прямая проходит через середину АВ. Имеем . Таким образом
и уравнение примет вид.

Выясним вопрос, проходит ли эта прямая через точку М(7;3).

Имеем , значит, эта прямая не проходит через указанную точку.

Уравнение прямой, проходящей через данную точку, параллельно данному вектору

Пусть прямая проходит через точку
параллельно вектору
.

Точка
лежит на прямой тогда и только тогда, когда векторы
и
колинеарны. Векторы
и
колинеарны тогда и только тогда, когда их координаты пропорциональны, то есть

(3)

Полученное уравнение и является уравнением искомой прямой.

Уравнение (3) представим в виде

, где принимает любые значения
.

Следовательно, можем записать

, где
(4)

Система уравнений (4) называется параметрическими уравнениями прямой.

Рассмотрим пример. Найти уравнение прямой, проходящей через точки . Мы можем построить уравнение прямой, если знаем точку и параллельный или перпендикулярный ей вектор. Точек в наличии целых две. Но если две точки лежат на прямой, то вектор, их соединяющий будет параллелен этой прямой. Поэтому воспользуемся уравнением (3), взяв в качестве вектора
вектор
. Получаем

(5)

Уравнение (5) называется уравнением прямой, проходящей через две данные точки.

Общее уравнение прямой

Определение. Общим уравнением линии первого порядка на плоскости называется уравнение вида
, где
.

Теорема. Всякая прямая на плоскости может быть задана в виде уравнения линии первого порядка, и всякое уравнение линии первого порядка является уравнением некоторой прямой на плоскости.

Первая часть этой теоремы доказывается просто. На всякой прямой можно указать некоторую точку
перпендикулярный ей вектор
. Тогда, согласно (2), уравнение такой прямой имеет вид. Обозначим
. Тогда уравнение примет вид
.

Теперь перейдем ко второй части теоремы. Пусть имеется уравнение
, где
. Будем считать для определенности
.

Перепишем уравнение в виде:

;

Рассмотрим на плоскости точку
, где
. Тогда полученное уравнение имеет вид , и является уравнением прямой, проходящей через точку
перпендикулярно вектору
. Теорема доказана.

В процессе доказательства теоремы мы попутно доказали

Утверждение. Если имеется уравнение прямой вида
, то вектор
перпендикулярен данной прямой.

Уравнение вида
называется общим уравнением прямой на плоскости.

Пусть имеется прямая
и точка
. Требуется определить расстояние от указанной точки до прямой.

Рассмотрим произвольную точку
на прямой. Имеем
. Расстояниеот точки
до прямой равно модулю проекции вектора
на вектор
, перпендикулярный данной прямой. Имеем

,

преобразуя, получаем формулу:

Пусть даны две прямые, заданные общими уравнениями

,
. Тогда векторы

перпендикулярны первой и второй прямой соответственно. Угол
между прямыми равен углу между векторами
,
.

Тогда формула для определения угла между прямыми имеет вид:

.

Условие перпендикулярности прямых имеет вид:

.

Прямые параллельны или совпадают тогда и только тогда, когда векторы

колинеарны. При этомусловие совпадения прямых имеет вид :
,

а условие отсутствия пересечения записывается в виде:
. Последние два условия докажите самостоятельно.

Исследуем характер поведения прямой по ее общему уравнению.

Пусть дано общее уравнение прямой
. Если
, то прямая проходит через начало координат.

Рассмотрим случай, когда ни один из коэффициентов не равен нулю
. Уравнение перепишем в виде:

,

,

Где
. Выясним смысл параметров
. Найдем точки пересечения прямой с осями координат. При
имеем
, а при
имеем
. То есть
- это отрезки, которые отсекает прямая на координатных осях.Поэтому уравнение
называется уравнением прямой в отрезках.

В случае
имеем

. В случае
имеем
. То есть прямая будет параллельна оси.

Напомним, что угловым коэффициентом прямой называется тангенс угла наклона этой прямой к оси
. Пусть прямая отсекает на осиотрезоки имеет угловой коэффициент. Пусть точка
лежит на данной

Тогда
==. И уравнение прямой запишется в виде

.

Пусть прямая проходит через точку
и имеет угловой коэффициент. Пусть точка
лежит на этой прямой.

Тогда =
.

Полученное уравнение называется уравнением прямой, проходящей через данную точку с заданным угловым коэффициентом.

Пусть даны две прямые
,
. Обозначим
- угол между ними. Пусть,углы наклона к оси Х соответствующих прямых

Тогда
=
,
.

Тогда условие параллельности прямых имеет вид
, а условие перпендикулярности

В заключение рассмотрим две задачи.

Задача . Вершины треугольника АВС имеют координаты: A(4;2), B(10;10), C(20;14).

Найти: а) уравнение и длину медианы, проведенной из вершины А;

б) уравнение и длину высоты, проведенной из вершины А;

в) уравнение биссектрисы, проведенной из вершины А;

Определим уравнение медианы АМ.

Точка М() середина отрезка ВС.

Тогда , . Следовательно, точка М имеет координаты M(15;17). Уравнение медианы на языке аналитической геометрии это уравнение прямой, проходящей через точку А(4;2) параллельно вектору ={11;15}. Тогда уравнение медианы имеет вид. Длина медианы АМ=.

Уравнение высоты AS - это уравнение прямой, проходящей через точку А(4;2) перпендикулярно вектору ={10;4}. Тогда уравнение высоты имеет вид 10(x-4)+4(y-2)=0, 5x+2y-24=0.

Длина высоты - это расстояние от точки А(4;2) до прямой ВС. Данная прямая проходит через точку B(10;10) параллельно вектору ={10;4}. Ее уравнение имеет вид, 2x-5y+30=0. Расстояние AS от точки А(4;2) до прямой ВС, следовательно, равно AS=.

Для определения уравнения биссектрисы найдем вектор параллельный этой прямой. Для этого воспользуемся свойством диагонали ромба. Если от точки А отложить единичные векторы одинаково направленные с векторамии, то вектор, равный их сумме, будет параллелен биссектрисе. Тогда имеем=+.

={6;8}, , ={16,12}, .

Тогда =В качестве направляющего вектора искомой прямой может служить вектор={1;1}, коллинеарный данному. Тогда уравнение искомой прямой имеет видилиx-y-2=0.

Задача. Река протекает по прямой линии, проходящей через точки А(4;3) и В(20;11). В точке С(4;8) живет Красная Шапочка, а в точке D(13;20) ее бабушка. Каждое утро Красная Шапочка берет пустое ведро из дома, идет на реку, черпает воду и относит ее бабушке. Найти самую короткую дорогу для Красной Шапочки.

Найдем точку Е, симметричную бабушке, относительно реки.

Для этого сначала найдем уравнение прямой, по которой течет река. Это уравнение можно рассматривать, как уравнение прямой, проходящей через точку А(4;3) параллельно вектору . Тогда уравнение прямой АВ имеет вид.

Далее найдем уравнение прямой DE, проходящей через точку D перпендикулярно АВ. Его можно рассматривать, как уравнение прямой, проходящей через точку D, перпендикулярно вектору
. Имеем

Теперь найдем точку S - проекцию точки D на прямую АВ, как пересечение прямых АВ и DE. Имеем систему уравнений

.

Следовательно, точка S имеет координаты S(18;10).

Поскольку S середина отрезка DE, то .

Аналогично .

Следовательно, точка Е имеет координаты Е(23;0).

Найдем уравнение прямой СЕ, зная координаты двух точек этой прямой

Точку М найдем как пересечение прямых АВ и СЕ.

Имеем систему уравнений

.

Следовательно, точка М имеет координаты
.

Тема 2. Понятие об уравнении поверхности в пространстве. Уравнение сферы. Уравнение плоскости, проходящей через данную точку, перпендикулярно данному вектору. Общее уравнение плоскости и его исследование Условие параллельности двух плоскостей. Расстояние от точки до плоскости. Понятие об уравнении линии. Прямая линия в пространстве. Канонические и параметрические уравнения прямой в пространстве. Уравнения прямой, проходящей через две данные точки. Условия параллельности и перпендикулярности прямой и плоскости.

Вначале, дадим определение понятия уравнения поверхности в пространстве.

Пусть в пространстве
задана некотораяповерхность . Уравнение
называется уравнениемповерхности , если выполнены два условия:

1.для любой точки
с координатами
, лежащей наповерхности, выполнено
, то есть ее координаты удовлетворяют уравнениюповерхности;

2. любая точка
, координаты которой удовлетворяют уравнению
, лежит на линии.

Построить функцию

Мы предлагаем вашему вниманию сервис по потроению графиков функций онлайн, все права на который принадлежат компании Desmos . Для ввода функций воспользуйтесь левой колонкой. Вводить можно вручную либо с помощью виртуальной клавиатуры внизу окна. Для увеличения окна с графиком можно скрыть как левую колонку, так и виртуальную клавиатуру.

Преимущества построения графиков онлайн

  • Визуальное отображение вводимых функций
  • Построение очень сложных графиков
  • Построение графиков, заданных неявно (например эллипс x^2/9+y^2/16=1)
  • Возможность сохранять графики и получать на них ссылку, которая становится доступной для всех в интернете
  • Управление масштабом, цветом линий
  • Возможность построения графиков по точкам, использование констант
  • Построение одновременно нескольких графиков функций
  • Построение графиков в полярной системе координат (используйте r и θ(\theta))

С нами легко в режиме онлайн строить графики различной сложности. Построение производится мгновенно. Сервис востребован для нахождения точек пересечения функций, для изображения графиков для дальнейшего их перемещения в Word документ в качестве иллюстраций при решении задач, для анализа поведенческих особенностей графиков функций. Оптимальным браузером для работы с графиками на данной странице сайта является Google Chrome. При использовании других браузеров корректность работы не гарантируется.

Если расположить единичную числовую окружность на координатной плоскости, то для ее точек можно найти координаты. Числовую окружность располагают так, чтобы ее центр совпал с точкой начала координат плоскости, т. е. точкой O (0; 0).

Обычно на единичной числовой окружности отмечают точки соответствующие от начала отсчета на окружности

  • четвертям - 0 или 2π, π/2, π, (2π)/3,
  • серединам четвертей - π/4, (3π)/4, (5π)/4, (7π)/4,
  • третям четвертей - π/6, π/3, (2π)/3, (5π)/6, (7π)/6, (4π)/3, (5π)/3, (11π)/6.

На координатной плоскости при указанном выше расположении на ней единичной окружности можно найти координаты, соответствующие этим точкам окружности.

Координаты концов четвертей найти очень легко. У точки 0 окружности координата x равна 1, а y равен 0. Можно обозначить так A (0) = A (1; 0).

Конец первой четверти будет располагаться на положительной полуоси ординат. Следовательно, B (π/2) = B (0; 1).

Конец второй четверти находится на отрицательной полуоси абсцисс: C (π) = C (-1; 0).

Конец третьей четверти: D ((2π)/3) = D (0; -1).

Но как найти координаты середин четвертей? Для этого строят прямоугольный треугольник. Его гипотенузой является отрезок от центра окружности (или начала координат) к точке середины четверти окружности. Это радиус окружности. Поскольку окружность единичная, то гипотенуза равна 1. Далее проводят перпендикуляр из точки окружности к любой оси. Пусть будет к оси x. Получается прямоугольный треугольник, длины катетов которого - это и есть координаты x и y точки окружности.

Четверть окружности составляет 90º. А половина четверти составляет 45º. Поскольку гипотенуза проведена к точке середины четверти, то угол между гипотенузой и катетом, выходящим из начала координат, равен 45º. Но сумма углов любого треугольника равна 180º. Следовательно, на угол между гипотенузой и другим катетом остается также 45º. Получается равнобедренный прямоугольный треугольник.

Из теоремы Пифагора получаем уравнение x 2 + y 2 = 1 2 . Поскольку x = y, а 1 2 = 1, то уравнение упрощается до x 2 + x 2 = 1. Решив его, получаем x = √½ = 1/√2 = √2/2.

Таким образом, координаты точки M 1 (π/4) = M 1 (√2/2; √2/2).

В координатах точек середин других четвертей будут меняться только знаки, а модули значений оставаться такими же, так как прямоугольный треугольник будет только переворачиваться. Получим:
M 2 ((3π)/4) = M 2 (-√2/2; √2/2)
M 3 ((5π)/4) = M 3 (-√2/2; -√2/2)
M 4 ((7π)/4) = M 4 (√2/2; -√2/2)

При определении координат третьих частей четвертей окружности также строят прямоугольный треугольник. Если брать точку π/6 и проводить перпендикуляр к оси x, то угол между гипотенузой и катетом, лежащим на оси x, составит 30º. Известно, что катет, лежащий против угла в 30º, равен половине гипотенузы. Значит, мы нашли координату y, она равна ½.

Зная длины гипотенузы и одного из катетов, по теореме Пифагора находим другой катет:
x 2 + (½) 2 = 1 2
x 2 = 1 - ¼ = ¾
x = √3/2

Таким образом T 1 (π/6) = T 1 (√3/2; ½).

Для точки второй трети первой четверти (π/3) перпендикуляр на ось лучше провести к оси y. Тогда угол при начале координат также будет 30º. Здесь уже координата x будет равна ½, а y соответственно √3/2: T 2 (π/3) = T 2 (½; √3/2).

Для других точек третей четвертей будут меняться знаки и порядок значений координат. Все точки, которые ближе расположены к оси x будут иметь по модулю значение координаты x, равное √3/2. Те точки, которые ближе к оси y, будут иметь по модулю значение y, равное √3/2.
T 3 ((2π)/3) = T 3 (-½; √3/2)
T 4 ((5π)/6) = T 4 (-√3/2; ½)
T 5 ((7π)/6) = T 5 (-√3/2; -½)
T 6 ((4π)/3) = T 6 (-½; -√3/2)
T 7 ((5π)/3) = T 7 (½; -√3/2)
T 8 ((11π)/6) = T 8 (√3/2; -½)

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png